专利名称:消音器及空调机的制作方法
技术领域:
本发明涉及对因制冷剂在制冷循环内流动的状态变化而产生的噪音予以降低用的消音器及使用消音器后的空调机。
对于现有的空调机,现结合图24及图25进行说明。
如图所示,制冷循环是,用配管106将压缩机101、制冷剂排出配管112、四通阀102、室外热交换器103、减压装置104a、104b(膨胀阀或毛细管)及室内热交换器105a、105b连接,在封闭回路中封入制冷剂而进行动作。通过切换四通阀102,就可改变制冷剂的流动方向,进行制冷运转或制暖运转。在这种装置中,近年来期望降低因制冷剂声音随着制冷剂在制冷循环内流动的状态变化所产生的噪音。尤其必需降低如下的噪音因压力变化大而来自制冷剂状态还呈气液二相流的减压装置104a、104b的噪音;来自压力脉动变大的压缩机101的排出侧配管112的噪音;来自将制冷剂均等地向室外热交换器103和室内热交换器105a、105b分流的分流器107的噪音;来自密集配管106的室外热交换器103及室内热交换器105a、105b部分的噪音。对于这些噪音,目前为止尝试了好几种降低噪音的措施。例如,作为降低来自一减压装置的膨胀阀104a的噪音的措施,日本发明专利公开1993年第113272号公报中的结构是,在膨胀阀104a的低压侧配管106设置了使膨胀式消音器与多孔板组合的消音器,由多孔板将膨胀式消音器分成二室,通过调整多孔板的孔径和孔数来消除制冷剂流动声音。另外,日本发明专利公开1994年第26738号公报中的结构是,在膨胀阀104a的高压侧配管106上设置锥状的扩管部,在扩管部内具有多孔板,预先将包含在液态制冷剂中的气泡状的气体制冷剂做得细小,通过使能量衰减,从而防止因气体制冷剂与膨胀阀104a的冲撞而导致噪音产生。另外,日本发明专利公开1996年第313113号公报中的结构是,在膨胀阀104a的高压侧配管106上,设置使制冷剂分流成二股再使其合流的分流器107,通过分流、混合气液二相流制冷剂而使液态制冷剂与气体制冷剂混合而均匀化,就可降低、防止制冷剂流动声音的产生。另外,日本发明专利公开1997年第133434号公报中的结构是,在膨胀阀104a前后的配管106上,设置改变配管直径之比的膨胀式消音器,绕上橡胶状防振材料等,通过将配管106小直径化而缓和急剧的压力变化,从而衰减制冷剂流动声和配管振动声。另外,作为降低从压缩机101流出的气体制冷剂脉动的措施,日本实用新型公开1994年第14685号公报中的结构是,在压缩机101的排出侧配管112上,具有将植毛式吸音材料设在内壁面上的膨胀式消音器,通过防止气体制冷剂的动能产生吸收与共鸣现象,而降低脉动。另外,日本发明专利公开1997年第250844号公报及日本发明专利公开1997年第250845号公报中的结构是,在压缩机101的排出侧配管112上安装膨胀式消音器,在膨胀式消音器内部设置隔板,在穿入膨胀式消音器而连接的配管106上穿设小孔,将与膨胀式消音器连接的配管106的前端朝向侧壁,或将膨胀式消音器做成双层结构,从而对由压缩机101排出的气体制冷剂的脉动波进行吸收、消音。另外,作为降低由用来分流制冷剂的分流器107所产生的噪音的措施,日本发明专利公开1993年第322379号公报中的的结构是,在分流器107内部具有滤网119与多孔板,通过调整多孔板的孔径和孔数,从而降低分流器107中的制冷剂流动声。另外,日本发明专利公开1993年第118709号公报中的结构是,在毛细管与室内热交换器105a间具有容量可变式的消音器,由设在室内机109a上的话筒和频率分析器检测噪音频率,使消音器的容量变化,以使消音效果相对噪音频率成为最大,从而增加消音器的消音效果。
如此,在空调机中,在制冷循环内循环的制冷剂的状态,因压力和温度条件等而变化。从压缩机排出的制冷剂是高温高压的气体制冷剂,在冷凝器中进行热交换,向膨胀阀等减压装置流入时,成为高温的液态制冷剂。通过减压装置后成为低温的气液二相制冷剂,在蒸发器中成为低温低压的气体制冷剂而被吸入压缩机。根据循环状态,从压缩机排出的制冷剂的脉动变得较大,增加了来自配管振动和冷凝器盘管的噪音。另外,由于冷凝器的热交换不充分,故向减压装置流入的制冷剂成为气液二相状态,在减压时,关系到来自减压装置和前后配管的噪音增加及来自冷凝器盘管和蒸发器盘管的噪音增加。
在上述现有技术中,由于为了降低噪音或降低脉动而使用将截面积做成逐渐增大的特殊形状的膨胀式消音器或分支管等的消音用构件,故存在着需要在压缩机周围和减压装置周围安装消音器用的额外空间的问题,从而以省空间且有效地降低噪音和压力脉动的要求被提了出来。
另外,为了降低噪音或脉动,在消音器中插入多孔板和隔板、滤网等,或使其与话筒和频率分析器连动、将消音器容积设成可变,或在消音器内面安装吸音材料,故存在着结构变大并变得复杂的问题,从而要求结构简单化和减少结构零件数。
另外,若消音器内的多孔板的孔径和孔数、隔板的间隔、扩管部的长度一次安装要变更是困难的,存在着噪音频率特性的变化随着循环状态的变动而降低效果变小的问题,从而,不受循环状态的变动影响而降低噪音、衰减压力脉动的传递要求被提了出来。
为解决这种现有问题,本发明目的在于提供一种消音器及使用它的空调机,作为消音装置无需额外空间,结构可简单化,容易装配加工,并且即使在制冷剂呈不规则的气液二相状态而流动的场合或脉动较大的场合,也可有效地衰减压力脉动的传递、并降低制冷剂流动声,此外,不受循环状态的变动影响,可降低制冷剂流动声和衰减压力脉动的传递。
为达到上述目的,本发明的消音器结构是,至少具有一个将连通两端间的孔设有多个的消音构件。
并且,本发明由于将同一形状的消音构件固定在多个同一截面积的配管内,故可最小限度地抑制零件数的增加,通过做成简单的结构,从而可获得可容易装配、加工的消音器。
另外,本发明串联配置将连通两端间的孔设有多个的消音构件,在互相的所述消音构件之间形成空间,即使在制冷剂呈不规则气液二相状态而流动的场合或脉动较大的场合,也可获得有效衰减压力脉动的传递、降低制冷剂流动声的消音器。
另外,本发明将由相邻的消音构件形成的空间的容积设成不相同,从而可获得不受循环状态的变动影响而可降低制冷剂流动声和衰减压力脉动的传递的消音器。
另外,为达到上述目的,本发明的空调机结构是,在减压装置的流入侧或流出侧的至少一方具有本发明消音器,可衰减因在减压时产生的噪音和制冷剂流动声及不规则气液二相状态导致的压力脉动。
另外,本发明做成在蒸发器的制冷剂流入侧或制冷剂流出侧的至少一方具有本发明消音器的结构,即使在蒸发器中制冷剂呈不规则气液二相状态而流动的场合也可获得可降低制冷剂流动声的空调机。
另外,本发明做成在将制冷剂分流到冷凝器或蒸发器的分流部的制冷剂流入侧具有本发明消音器的结构,从而可获得在冷凝器或蒸发器的分流部、可对因气液二相制冷剂的不规则的流动导致产生制冷剂冲撞声予以衰减的空调机。
图1是本发明实施例1的空调机的制冷循环图。
图2是膨胀阀与消音器的主要部分放大的剖视图。
图3是消音器的横剖视图。
图4是装入膨胀阀的室内机的结构图。
图5是装入膨胀阀的在室内机的室内热交换器侧面附近的噪音频率分析图。
图6是装入膨胀阀的在室内机的室内热交换器正面1m处的噪音频率分析图。
图7是装入膨胀阀的在室内机的室内热交换器侧面附近的噪音频率分析图。
图8是装入膨胀阀的在室内机的室内热交换器正面1m处的噪音频率分析图。
图9是其它结构主要部分的放大图。
图10是实施例2的空调机的制冷循环图。
图11是压缩机、排出管及消音器的主要部分的放大图。
图12是其它结构主要部分的放大图。
图13是其它结构主要部分的放大图。
图14是室内热交换器、液态侧导管及消音器的主要部分的放大图。
图15是其它结构主要部分的放大图。
图16是其它结构主要部分的放大图。
图17是室内热交换器、气体侧导管及消音器的主要部分的放大图。
图18是其它结构主要部分的放大图。
图19是其它结构主要部分的放大图。
图20是分流器、合流部配管及消音器的主要部分的放大图。
图21是其它结构主要部分的放大图。
图22是其它结构主要部分的放大图。
图23是其它结构主要部分的放大图。
图24是表示现有消音器一例子的结构图。
图25是现有空调机的制冷循环图。
就本发明实施例结合附图进行说明。
另外,对于与现有例子相同地方标上相同符号,其详细说明省略。
实施例1如图1、图2及图3所示,热泵式制冷循环是,将压缩机101、四通阀102、室外热交换器103、膨胀阀104a、膨胀阀104b、室内热交换器105a、室内热交换器105b用制冷剂配管106连接而成,在与膨胀阀104a及膨胀阀104b的流入侧及流出侧连接的制冷剂配管106内,插入有将小直径管1集束成多根的蜂窝式管子2,然后插入外径小于制冷剂配管106的内径、内部呈中空的圆筒管3a作为衬套。并按蜂窝式管子2、圆筒管3b、蜂窝式管子2的顺序插入,形成消音器4a。衬套的圆筒管3a及圆筒管3b分别呈不同的长度,通过将制冷剂配管106伸缩,将由蜂窝式管子2、圆筒管3a及圆筒管3b形成的消音器4a固定在制冷剂配管106内。在最后插入的蜂窝式管子2的外侧,将混入制冷剂中的垃圾予以去除用的滤网119用绳固定在制冷剂配管106上。
在上述结构中,在进行制冷运转的场合(图中实线箭头),从压缩机101排出的高温高压的气体制冷剂,通过排出配管112、四通阀102,用室外热交换器103而与由室外风扇(未图示)送风的外部空气进行热交换,成为高温高压的液态制冷剂,并流入膨胀阀104a及膨胀阀104b。流入膨胀阀104a及膨胀阀104b的制冷剂被减压,成为低温低压的气液二相制冷剂流出。从膨胀阀104a及膨胀阀104b流出的制冷剂,分别在室内热交换器105a及室内热交换器105b中与由室内风扇(未图示)送风的室内空气进行热交换,成为低温低压的气体制冷剂流出,通过四通阀102被吸入压缩机101。通常,虽然流入膨胀阀104a及膨胀阀104b的制冷剂处于液体状态,但根据循环状态,有时呈液态制冷剂与气体制冷剂混合后的气液二相状态,该密度及流速不相同的气液二相制冷剂若在制冷剂配管106内流动,压力脉动就变大,并且,若在该密度不相同的状态下被减压,则减压时的噪音也增加。例如,流入膨胀阀104a的制冷剂在处于气液二相状态的场合,制冷剂就通过设在流入侧的制冷剂配管106上的消音器4a。气液二相制冷剂,因与蜂窝式管子2冲撞而受到阻力,液态制冷剂及气体制冷剂都被分散,流入形成蜂窝式管子2的小直径管1内。由于互相的流路由多根小直径管1隔开,故流入各小直径管1的制冷剂不会互相干扰,通过在各小直径管1内流动而被均匀化与整流。通过小直径管1的制冷剂流出到由圆筒管3b形成的空间。圆筒管3b的开口截面积,由于比蜂窝式管子2的开口截面积大,故通过圆筒管3b的制冷剂产生膨胀,压力脉动被衰减。此外,由于制冷剂通过蜂窝式管子2、圆筒管3a,故可提高均匀化、整流与降低压力脉动的效果,流入膨胀阀104a。在膨胀阀104a减压时,由于制冷剂密度不均匀及压力脉动变小,因此,减压时的噪音就被降低。减压后的气液二相制冷剂在通过蜂窝式管子2、圆筒管3a、蜂窝式管子2、圆筒管3b的过程中,反复均匀化与膨胀,减压时的噪音及压力脉动的传递被衰减。由于膨胀阀104a减压时的阻力非常大,所以通过蜂窝式管子2时的阻力不会给制冷循环带来不良影响。压力脉动的频率特性及噪音的频率特性虽然根据气液二相制冷剂内的液态制冷剂与气体制冷剂的比例而变化,但由于通过对圆筒管3a的长度与圆筒管3b的长度的组合予以改变,可对付声压电平高的频率与衰减量变大的频率,故不会受到循环状态的变动影响,可降低噪音及衰减压力脉动的传递。
另外,在制暖运转的场合(图中虚线箭头),切换四通阀102,制冷剂的流动方向与制冷时相反。流入膨胀阀104a及膨胀阀104b的制冷剂状态即使是成为气液二相制冷剂那样的场合,也可利用与制冷运转时陈述的相同的作用来降低噪音及衰减压力脉动的传递。但是,制冷循环在实施例所示那样的形成多室型空调机那样的场合,例如,有成为运转室内热交换器105a、停止室内热交换器105b的状况时,此时,不使膨胀阀104b全闭,而使其稍呈打开的状态,制冷剂就不积存在与停止的室内热交换器105b内及与室内热交换器105b连接的制冷剂配管106内。因此,流入膨胀阀104b的制冷剂虽然气体制冷剂的比例为较大的气液二相状态,但在通过消音器4a的过程中,通过反复均匀化与膨胀,就可降低制冷剂流动声及衰减压力脉动,另外,从膨胀阀104b通过制冷剂配管106而传递的制冷剂流动声和压力脉动也被衰减。由于利用制冷剂配管106的一部分构成消音器4a,故无需为安装消音器4a而设置额外的空间,且由于零件结构简单,故可容易装配、加工。图4是将膨胀阀104a装入室内热交换器105a后的状态,在图示状态中,设成制暖停止状态,图5、图6、图7及图8表示室内热交换器105b侧进行制暖运转时的噪音频率特性。图5及图6是将消音器4a插入与膨胀阀104a连接的二根制冷剂配管106内、对两端部进行铆接固定的频率特性图,作为消音器4a使用一个蜂窝式管子2,蜂窝式管子2内的小直径管1是内径为0.2mm长度为5mm、开口率设成约20%的结构。图5是室内热交换器105a侧面附近测定后的噪音频率特性,图6是在离室内热交换器105a正面1m处位置测定后的噪音频率特性。而对于在图7及图8中使用的消音器4a,蜂窝式管子2内的小直径管1,其内径为0.2mm、开口率设成约20%。蜂窝式管子2使用3个长度为5mm的管子,圆筒管3a及圆筒管3b设成长度5mm。将如上的消音器4a插入与膨胀阀104a连接的二根制冷剂配管106内,对两端部进行铆接固定。我们知道,由于长度相对管子内径0.2mm较长为长5mm,故可获得足够的整流效果,通过衰减压力脉动及噪音的传递,可大幅度降低处于4kHz以下的噪音电平,来自室内热交换器105a的放射声变小。另外,我们知道,因二相流制冷剂的均匀化,故也可降低10kHz以上的噪音电平,还可衰减膨胀阀104a减压时的不规则的制冷剂通过声。本实施例虽然是设成热泵式制冷循环的,但也可设成制冷专用循环。
另外,虽然将膨胀阀的驱动装置设成图2所示那样的使用转子与定子的电动式,但也可设成利用根据感温筒检测的温度产生变化的气体压力而使隔膜变形的温度式、用手动对制冷剂的节流作用进行调节的手动式、利用蒸发器内的压力使阀动作的定压式、利用蒸发器流出的吸入蒸气的压力与温度进行动作的控制(パイロット)式等。
另外,虽然将阀体的形状设成针状,但也可设成球状或凸轮形状、圆筒形状,其作用效果不产生差异。另外,虽然将定子设成与壳体的外部嵌合的所谓带外壳形状,但也可将定子设成容纳在壳体内部的内藏形状。
另外,虽然用作为制冷剂均匀化装置的蜂窝式管子的构件做成将多个小直径管予以集束的结构,但只要是多个的连通孔,也可做成在圆筒上设置连通孔的结构。
另外,虽然将多个小直径管设成同一直径,但也可使不同直径的小直径管组合。
另外,虽然将具有同一开口面积的蜂窝式管子配置成相邻状,但也可将不同开口面积的蜂窝式管子配置成相邻状。
另外,虽然将蜂窝式管子做成圆筒状,但也可做成多边形状。
另外,虽然为保持相邻的蜂窝式管子的间隔而使用了圆筒管,但也可使用多边形的管子。
另外,虽然将蜂窝式管子用作为制冷剂的均匀化装置,但也可使用多孔质金属或多孔质陶瓷。
另外,虽然作为蜂窝式管子的固定方法用制冷剂配管的伸缩来进行,但也可压入制冷剂配管内或在蜂窝式管子两端部进行铆接或用绳系紧。
另外,虽然为保持相邻的蜂窝式管子的间隔而使用了圆筒管,但也可对配管利用绳系紧或铆接来保持间隔,也可使用圆筒以外的形状或管子以外的结构。
另外,虽然将形成消音器的蜂窝式管子的个数设成三个及圆筒管的个数设成二个,但也可将蜂窝式管子、圆筒管的个数分别设成小于三个、小于二个或三个以上、二个以上。
另外,虽然将各个圆筒管设成不同长度,但也可设成相同长度的组合。
另外,虽然将消音器安装位置设在制冷剂配管内,但也可设在膨胀阀的一部分上,或者也可将消音器做成一个构件,利用钎焊、焊接、扩口管与管接头等与制冷剂配管结合。
另外,虽然将消音器设在膨胀阀与滤网之间,但当然也可做成将滤网设在消音器与膨胀阀之间的结构。
另外,如图9所示,作为减压装置,也可改换膨胀阀为毛细管。另外,虽然将室内热交换器的个数设成二个,但也可设成一个或三个以上。
实施例2图10是本发明实施例2的空调机的制冷循环图。系对将室外单元108和分别由进行室内空气与制冷剂的热交换的室内热交换器105a、105b等所构成的室内单元109a、109b通过液态侧配管110a、110b及气体侧配管111a、111b予以连接构成的多个室内空间进行空气调节的多室型的空调机的制冷循环,而室外单元108包括对制冷剂进行压缩的压缩机101;对由压缩机101压缩排出的制冷剂的流路进行切换的四通阀102;与四通阀102的一端连接而进行外部空气与制冷剂的热交换且具有多个制冷剂流路的多通道式的室外热交换器103;用来将制冷剂分配到室外热交换器103的各流路的分流器107;从分流器107分支连接并进行制冷剂的减压与流量调整的作为减压装置的膨胀阀104a、104b等。
在室外单元108内,设有将从压缩机101排出的制冷剂引导到四通阀102的排出管112,消音器4b设在该排出管112内,在将膨胀阀104a、104b与分流器107的合流侧予以连接的合流部配管113内设有消音器4c。
另外,在室内单元109a内,在将室内热交换器105a与液态侧配管110a予以连接的液态侧导管114a上设有消音器4d,在将室内热交换器105a与气体侧配管111a予以连接的气体侧导管115a上设有消音器4e。同样,在室内单元109b内,在将室内热交换器105b与液态侧配管110b予以连接的液态侧导管114b上设有消音器4d,在将室内热交换器105b与气体侧配管111b予以连接的气体侧导管115b上设有消音器4e。
在上述结构中,就运转动作进行说明。当室内单元109a进行制冷运转时,在压缩机101中压缩排出的高温高压状态的气体制冷剂利用四通阀102而向实线所示的方向流动,流入室外热交换器103。流入室外热交换器103内的制冷剂与由室外风扇(未图示)送风的外部空气进行热交换而冷凝液化。由于设在未进行运转的室内单元109b的配管系统中的膨胀阀104b完全被关闭,故冷凝液化后的制冷剂全部流入膨胀阀104a。在膨胀阀104a中,制冷剂在被调整流量的同时被减压,成为气液混合的二相状态并通过液态侧配管110a,流入室内热交换器105a。流入室内热交换器105a的制冷剂,与由室内风扇(未图示)送风的室内空气进行热交换而蒸发气化。室内空气利用与制冷剂的热交换而吸热,从而对室内空间进行制冷.因与室内空气热交换而蒸发气化的制冷剂,通过气体侧配管111a而返回到室外单元108内,被吸入到压缩机101中。吸入到压缩机101中的制冷剂,再被压缩排出,从而反复同样的动作。
在高温高压的制冷剂呈较大压力脉动而从压缩机101排出的场合,即,在吸入压缩机101中的制冷剂的温度、压力、过热度、流量等较大变动的状态或在压缩机101的压缩部因前后压差等的影响而产生压力脉动的状态等的场合,结合图11说明消音器4b中压力脉动及噪音传递的衰减效果。图11是压缩机101、排出管112及消音器4b的主要部分的放大图,如图所示,在用钎焊或焊接而与压缩机101排出部接合的排出管112中内设消音器4b,消音器4b如此形成按顺序将把多根小直径管1予以集束的蜂窝式管子2、外径小于排出管112的内径而内部成为中空的圆筒管3a、蜂窝式管子2、圆筒管3b、蜂窝式管子2插入排出管112内。圆筒管3a及圆筒管3b分别成为不同长度,通过伸缩排出管112,由蜂窝式管子2、圆筒管3a及圆筒管3b所构成的消音器4b就被固定在排出管112内。
当呈较大压力脉动的气体状制冷剂从压缩机101排出时,气体状制冷剂就被导入排出管112,并通过内设在排出管112中的消音器4b。流入消音器4b的制冷剂最初与蜂窝式管子2冲撞,受到阻力,分散能量后,流入形成蜂窝式管子2的小直径管1内。由于多根小直径管1的流路互相不相同,故流入各个小直径管1的制冷剂不会互相干扰,通过在各小直径管1中流动而被整流,流出到由圆筒管3a形成的空间。圆筒管3a的开口截面积由于比蜂窝式管子2的开口截面积大,故通过圆筒管3a的制冷剂产生膨胀,压力脉动被衰减。此外,制冷剂由于依次通过蜂窝式管子2、圆筒管3b、蜂窝式管子2,故可提高整流效果及压力脉动的降低效果,并从消音器4b流出。从消音器4b流出的制冷剂虽然通过四通阀102而流入室外热交换器103,但由于流入室外热交换器103的制冷剂的压力脉动被充分衰减,故可使因制冷剂的压力脉动而导致室外热交换器103中的制冷剂放射声充分降低,并可衰减因压力脉动而导致的配管振动,提高设备可靠性。另外,压力脉动的频率特性及噪音的频率特性,虽然随制冷剂的温度、压力、流量等而变化,但由于通过改变圆筒管3a长度与圆筒管3b长度的组合,可对付声压电平高的频率与衰减量变大的频率,故不会受到循环状态的变动影响,可降低噪音及衰减压力脉动的传递。另外,在上述实施例中,虽然是通过伸缩排出管112来固定蜂窝式管子2的,但也可在蜂窝式管子2的两端部进行铆接或用绳系紧,另外,虽然为保持相邻的蜂窝式管子2的间隔而使用圆筒管3a、3b,但也可对配管利用绳系紧或铆接等来保持间隔,也可使用圆筒以外的形状或管子以外的结构。此外,虽然做成使消音器4b设在排出管112内的结构,但也可将消音器4b构成为另外的部件,利用钎焊、焊接、或扩口连接等使其夹装在排出管112中。例如,如图12所示,也可将消音器4b设成单独部件,用钎焊与排出管112接合,蜂窝式管子2的固定与间隔保持用绳系紧。另外,如图13所示,用直径与排出管112不相同的另外部件来构成消音器4b,与排出管112的连接使用扩口连接,也可用铆接对蜂窝式管子2进行固定与间隔保持。
在流入室内热交换器105a的气液二相制冷剂的气体状制冷剂与液态状制冷剂的比例为较大变动状态的场合,即,在压缩机101因开始运转时、停止运转时、转速变化时等而使温度、压力状态为较大变动的状态或者室外单元108与室内单元109a的配置存在高低差、制冷循环呈不稳定状态等的场合,结合图14说明消音器4d中压力脉动及噪音传递的衰减效果。图14是室内热交换器105a、液态侧导管114a及消音器4d的主要部分放大图,如图所示,在制冷运转时的室内热交换器105a的制冷剂流入部,用钎焊或焊接接合有液态侧导管114a,使消音器4d设在液态侧导管114a内。消音器4d的结构与前述的消音器4b相同,如此形成按顺序将把多根小直径管1予以集束的蜂窝式管子2、外径小于液态侧导管114a的内径而内部成为中空的圆筒管3a、蜂窝式管子2、圆筒管3b、蜂窝式管子2插入液态侧导管114a内。圆筒管3a及圆筒管3b分别成为不同长度,通过伸缩液态侧导管114a,由蜂窝式管子2、圆筒管3a及圆筒管3b所构成的消音器4d就被固定在液态侧导管114a内。
当气体状制冷剂与液态状制冷剂的比例产生变动的不稳定状态的气液二相制冷剂流入液态侧导管114a时,制冷剂就通过设在液态侧导管114a上的消音器4d。流入消音器4d的气液二相制冷剂最初与蜂窝式管子2冲撞而受到阻力,液态制冷剂及气体制冷剂均被分散,流入形成蜂窝式管子2的小直径管1内。由于多根小直径管1的流路互相不相同,故流入各小直径管1的制冷剂不会互相干扰,成为在各小直径管1内流动的状态,制冷剂被均匀化与整流。通过小直径管1的制冷剂,流出到由圆筒管3a形成的空间。圆筒管3a的开口截面积由于比蜂窝式管子2的开口截面积大,故通过圆筒管3a的制冷剂产生膨胀,压力脉动被衰减。此外,由于制冷剂依次通过蜂窝式管子2、圆筒管3b、蜂窝式管子2,故可提高均匀化、整流及压力脉动的降低效果,并从消音器4d流出。从消音器4d流出的制冷剂虽然流入室内热交换器105a,但流入室内热交换器105a的气液二相制冷剂,由于气相、液相被充分均匀化并且压力脉动也被充分衰减,因此,在室内热交换器105a中,可使因气液二相制冷剂的不均匀流动导致制冷剂流动声及因压力脉动导致制冷剂放射声充分降低。另外,压力脉动的频率特性及噪音的频率特性,虽然随气液二相制冷剂内的液态制冷剂与气体制冷剂的比例而变化,但由于通过改变圆筒管3a长度与圆筒管3b长度的组合,可对付声压电平高的频率与衰减量变大的频率,故不会受到循环状态的变动影响,可降低噪音及衰减压力脉动的传递。另外,在上述实施例中,虽然是通过伸缩液态侧导管114a来固定蜂窝式管子2的,但也可在蜂窝式管子2的两端部进行铆接或用绳系紧,另外,虽然为保持相邻的蜂窝式管子2的间隔而使用圆筒管3a、3b,但也可对配管利用绳系紧或铆接来保持间隔,也可使用圆筒以外的形状或管子以外的结构。此外,虽然做成使消音器4d设在液态侧导管114a内的结构,但也可将消音器4d构成为另外的部件,利用钎焊、焊接、或扩口连接等使其夹装在液态侧导管114a中,此外,还可不配置在液态侧导管114a中,而使其夹装在液态侧导管114a与液态侧配管110a之间。例如,如图15所示,用直径与液态侧导管114a不相同的另外部件来构成消音器4d,利用钎焊与液态侧导管114a固定,也可用铆接对蜂窝式管子2进行固定与间隔保持。另外,如图16所示,也可将消音器4d设成另外部件并配置在室内单元109a的外部,利用扩口连接使其夹装在液态侧导管114a与液态侧配管110a之间。
现结合图10说明室内单元109a进行制暖运转时的运转动作。在压缩机101中压缩而排出的高温高压的气体制冷剂,通过四通阀102而向虚线所示的方向流动。这里,设在未进行运转的室内单元109b系统中的膨胀阀104b设定在最小开度,以防止向室内热交换器105b内积存液态制冷剂,通过四通阀102后的制冷剂根据膨胀阀104a、104b的开度而被分流到室内单元109a、109b,通过气体侧配管111a、111b而分别流入室内热交换器105a、105b。流入室内热交换器105a的制冷剂,与由室内风扇(未图示)送风的室内空气进行热交换而冷凝液化。室内空气利用与制冷剂的热交换而吸热,从而对室内空间进行制暖。利用与室内空气的热交换而冷凝液化的制冷剂,通过液态侧配管110a而返回到室外单元108,并由膨胀阀104a减压,成为气液混合的二相状态。而流入室内热交换器105b的制冷剂,通过室内热交换器105b,并通过液态侧配管110b而返回到室外单元108,利用膨胀阀104b减压后,与通过膨胀阀104a的制冷剂合流而流入分流器107。制冷剂利用分流器107分流流入室外热交换器103的各个流路。在室外热交换器103内,制冷剂与由室外风扇(未图示)送风的外部空气进行热交换而蒸发气化。蒸发气化后的制冷剂再通过四通阀102而被吸入到压缩机101中。
在流入进行运转的室内单元109a内的室内热交换器105a的气体状的制冷剂是呈压力脉动状态的场合,即,在压缩机101因开始运转时、停止运转时、转速变化时等而使温度、压力状态为较大变动的状态或者室外单元108与室内单元109a的配置存在高低差、制冷循环呈不稳定状态等的场合,一旦压力脉动传递给室内热交换器105a,则在室内热交换器105a中产生因脉动导致的制冷剂放射声。另外,流入处于停止状态的室内单元109b内的室内热交换器105b的制冷剂,因是微小流量,故成为气体状制冷剂的比例较高的气液二相状态。在该气液二相制冷剂的气体状制冷剂与液态状制冷剂的比例较大变动且呈压力脉动状态的场合,即,在压缩机101因开始运转时、停止运转时、转速变化时等而使温度、压力状态为较大变动的状态或者室外单元108与室内单元109a的配置存在高低差、制冷循环呈不稳定状态等的场合,在室内热交换器105a中产生因制冷剂的脉动而导致的制冷剂放射声,并也产生因气液二相制冷剂不均匀流动而导致的制冷剂流动声。尤其在停止状态的室内单元109b中室内风扇(未图示)也停止运转,因此,在室内热交换器105b中产生的制冷剂声成为支配性噪音。现结合图17说明设在停止状态的室内单元109b内的消音器4e中压力脉动及噪音传递的衰减效果。图17是室内热交换器105b、气体侧导管115b及消音器4e的主要部分放大图,如图所示,在制暖运转时的室内热交换器105b的制冷剂流入部用钎焊或焊接接合有气体侧导管115b,消音器4e设在气体侧导管115b内。消音器4e的结构与消音器4b及消音器4d相同,如此形成按顺序将把多根小直径管1予以集束的蜂窝式管子2、外径小于气体侧导管115b的内径而内部成为中空的圆筒管3a、蜂窝式管子2、圆筒管3b、蜂窝式管子2插入气体侧导管115b内。圆筒管3a及圆筒管3b分别成为不同长度,通过伸缩气体侧导管115b,由蜂窝式管子2、圆筒管3a及圆筒管3b所构成的消音器4e就被固定在气体侧导管115b内。
当气体状制冷剂与液态状制冷剂的比例产生变动的不稳定状态的气液二相制冷剂流入气体侧导管115b时,制冷剂就通过设在气体侧导管115b上的消音器4e。流入消音器4e的气液二相制冷剂最初与蜂窝式管子2冲撞而受到阻力,液态制冷剂及气体制冷剂均被分散,流入形成蜂窝式管子2的小直径管1内。由于多根小直径管1的流路互相不相同,故流入各小直径管1的制冷剂不会互相干扰,成为在各小直径管1内流动的状态,制冷剂被均匀化与整流。通过小直径管1的制冷剂,流出到由圆筒管3a形成的空间。圆筒管3a的开口截面积由于比蜂窝式管子2的开口截面积大,故通过圆筒管3a的制冷剂膨胀,压力脉动被衰减。此外,由于制冷剂依次通过蜂窝式管子2、圆筒管3b、蜂窝式管子2,故可提高均匀化、整流及压力脉动的降低效果,并从消音器4e流出。从消音器4e流出的制冷剂虽然流入室内热交换器105b,但流入室内热交换器105b的气液二相制冷剂,由于气相、液相被充分均匀化并且压力脉动也被充分衰减,因此,在室内热交换器105a中,可使因气液二相制冷剂的不均匀流动导致制冷剂流动声及因压力脉动导致制冷剂放射声充分降低。另外,压力脉动的频率特性及噪音的频率特性,虽然随气液二相制冷剂内的液态制冷剂与气体制冷剂的比例而变化,但由于通过改变圆筒管3a长度与圆筒管3b长度的组合,可对付声压电平高的频率与衰减量变大的频率,故不会受到循环状态的变动影响,可降低噪音及衰减压力脉动的传递。另外,在上述实施例中,虽然是通过伸缩气体侧导管115b来固定蜂窝式管子2的,但也可在蜂窝式管子2的两端部进行铆接或用绳系紧,另外,虽然为保持相邻的蜂窝式管子2的间隔而使用圆筒管3a、3b,但也可对配管利用绳系紧或铆接来保持间隔,也可使用圆筒以外的形状或管子以外的结构。此外,虽然做成使消音器4e设在气体侧导管115b内的结构,但也可将消音器4e构成为另外的部件,利用钎焊、焊接、或扩口连接等使其夹装在气体侧导管115b中,此外,还可不配置在气体侧导管115b中,而使其夹装在气体侧导管115b与气体侧配管111b之间。例如,如图18所示,用直径与气体侧导管115b不相同的另外部件来构成消音器4e,利用钎焊与气体侧导管115b固定,也可用铆接对蜂窝式管子2进行固定与间隔保持。另外,如图19所示,也可将消音器4e设成另外部件并配置在室内单元109b的外部,利用扩口连接使其夹装在气体侧导管115b与气体侧配管111b之间。
在流入分流器107的气液二相制冷剂的气体状制冷剂与液态状制冷剂的比例为较大变动状态的场合,即,在压缩机101因开始运转时、停止运转时、转速变化时等而使温度、压力状态为较大变动状态的场合,结合图20说明消音器4c中压力脉动及噪音传递的衰减效果。图20是分流器107、合流部配管113及消音器4c的主要部分放大图,如图所示,在分流器107的合流部,用钎焊或焊接接合合流部配管113,使消音器4c设在合流部配管113内。消音器4c的结构与消音器4b、4d、4e相同,如此形成按顺序将把多根小直径管1予以集束的蜂窝式管子2、外径小于合流部配管113的内径而内部成为中空的圆筒管3a、蜂窝式管子2、圆筒管3b、蜂窝式管子2插入合流部配管113内。圆筒管3a及圆筒管3b分别成为不同长度,通过伸缩合流部配管113,由蜂窝式管子2、圆筒管3a及圆筒管3b所构成的消音器4c就被固定在合流部配管113内。
当气体状制冷剂与液态状制冷剂的比例产生变动的不稳定状态的气液二相制冷剂流入合流部配管113时,制冷剂就通过设在合流部配管113上的消音器4c。流入消音器4c的气液二相制冷剂最初与蜂窝式管子2冲撞而受到阻力,液态制冷剂及气体制冷剂均被分散,流入形成蜂窝式管子2的小直径管1内。由于多根小直径管1的流路互相不相同,故流入各小直径管1的制冷剂不会互相干扰,成为在各小直径管1内流动的状态,制冷剂被均匀化与整流。通过小直径管1的制冷剂,流出到由圆筒管3a形成的空间。圆筒管3a的开口截面积由于比蜂窝式管子2的开口截面积大,故通过圆筒管3a的制冷剂膨胀,压力脉动被衰减。此外,由于制冷剂依次通过蜂窝式管子2、圆筒管3b、蜂窝式管子2,故可提高均匀化、整流及压力脉动的降低效果,并从消音器4c流出。从消音器4c流出的制冷剂虽然流入分流器107,但由于流入分流器107内的气液二相制冷剂被充分均匀化,因此,在分流器107中可进行可靠的分流,且由于均匀地分流到室外热交换器103的多个各个流路中,故可进行效率良好的热交换,另外,流入室外热交换器103的气液二相制冷剂,由于气相、液相被充分均匀化并且压力脉动也被充分衰减,故在室外热交换器103中可使因气液二相制冷剂的不均匀流动导致制冷剂流动声及因压力脉动导致制冷剂放射声充分降低。另外,压力脉动的频率特性及噪音的频率特性,虽然随气液二相制冷剂内的液态制冷剂与气体制冷剂的比例而变化,但由于通过改变圆筒管3a长度与圆筒管3b长度的组合,可对付声压电平高的频率与衰减量变大的频率,故不会受到循环状态的变动影响,可降低噪音及衰减压力脉动的传递。另外,在上述实施例中,虽然是通过伸缩合流部配管113来固定蜂窝式管子2的,但也可在蜂窝式管子2的两端部进行铆接或用绳系紧,另外,虽然为保持相邻的蜂窝式管子2的间隔而使用圆筒管3a、3b,但也可对配管利用绳系紧或铆接来保持间隔,也可使用圆筒以外的形状或管子以外的结构。此外,虽然做成使消音器4c设在合流部配管113内的结构,但也可将消音器4c构成为另外的部件,利用钎焊、焊接、或扩口连接等使其夹装在合流部配管113中,此外,还可不配置在合流部配管113中,而将蜂窝式管子插入固定在分流器107的内部,一体式构成分流器107与消音器4c。例如,如图21所示,用直径与合流部配管113不相同的另外部件来构成消音器4c,与合流部配管的连接使用扩口连接,也可用铆接对蜂窝式管子2进行固定与间隔保持。另外,如图22所示,也可将蜂窝式管子2插入分流器107的内部,通过用铆接进行蜂窝式管子2在分流器107上的固定与蜂窝式管子2的间隔保持,从而将分流器107与消音器4c构成为一体式的部件。另外,在本实施例中,虽然作为室外热交换器103而使用空冷式的多通道式翅片与管子(フィンアンドチュ-ブ)热交换器,在被连接的分流器107上设置消音器4c,但可适用的热交换器不限于翅片与管子,即使使用以水、制冷剂等为热源的板式热交换器或双层管式热交换器等并在流入部设置消音器4c也可获得同样的效果。图23是在板式热交换器的流体流入部分分别设置了消音器4c的结构图,板式热交换器116,将形成流体流路的多个板层叠,2种流体通过互不相同的多个流路,就可进行流体间的热交换。在板式热交换器内流动的第1流体的流动用实线表示,与第1流体进行热交换的第2流体的流动用虚线表示,在将第1流体导入到板式热交换器116内的流体流入部117a、将第2流体导入到板式热交换器116内的流体流入部117b、将第1流体从板式热交换器116导出的流体流出部118a、以及将第2流体从板式热交换器116导出的流体流出部118b上分别设有消音器4c。第1流体及第2流体在通过各个流体流入部117a、117b时,在脉动得到抑制的同时被均匀化、整流,然后流入板式热交换器116内并向各流路分流,因此,可降低脉动被衰减后的通过声和提高进行均质分流的热交换效率。
另外,在本实施例中,虽然设成热泵式制冷循环,但也可设成制冷专用循环。
另外,虽然用作为制冷剂均匀化装置的蜂窝式管子的构件做成将多个小直径管予以集束的结构,但只要是多个的连通孔,也可做成在圆筒上设置连通孔的结构。
另外,虽然将多个小直径管设成同一直径,但也可使不同直径的小直径管组合。
另外,虽然将具有同一开口面积的蜂窝式管子配置成相邻状,但也可将不同开口面积的蜂窝式管子配置成相邻状。
另外,虽然将蜂窝式管子做成圆筒状,但也可做成多边形状。
另外,虽然为保持相邻的蜂窝式管子的间隔而使用了圆筒管,但也可使用多边形的管子。
另外,虽然将蜂窝式管子用作为制冷剂的均匀化装置,但也可使用多孔质金属或多孔质陶瓷。
另外,虽然将形成消音器的蜂窝式管子的个数设成三个及圆筒管的个数设成二个,但也可将蜂窝式管子、圆筒管的个数分别设成小于三个、小于二个或三个以上、二个以上。
另外,虽然将各个圆筒管设成不同长度,但也可设成相同长度的组合。
另外,虽然将室内热交换器的个数设成二个,但也可设成一个或三个以上。另外,作为制冷运转时的例子,虽然例举了室内单元109a进行制冷运转的场合,但即使是室内单元109b进行制冷运转的场合、或室内单元109a、109b都进行制冷运转的场合均可。
另外,虽然例举了处于停止状态的室内单元109b作为制暖运转时的例子,但即使在运转的室内单元109a中也可,室内单元109a、109b都进行制暖运转也可。另外,虽然在制冷循环内设置了多个消音器,但也可分别单独设置,也可改变消音器的组合而设置。
通过在实施例所示以外的制冷循环中的产生制冷剂声的部位也设置本发明的消音器,可获得噪音及脉动的降低效果。
采用本发明,由于将消音构件插入固定在截面积一定的制冷剂配管内而形成消音器,故可提供具有可省却为安装消音器用的额外空间的效果的消音器。另外,可提供将零件数的增加抑制到最小限度、具有结构简单且可容易装配加工的效果的消音器。
另外,即使是制冷剂成为不规则的气液二相状态而流动的场合或脉动较大的场合,也可提供有效地衰减压力脉动的传递、具有可降低制冷剂流动声的效果的消音器。
另外,可提供不会受到循环状态的变动影响、具有降低制冷剂流动声和衰减压力脉动传递的效果的消音器。
另外,即使流入减压装置的制冷剂是处于气液二相状态的场合,也可提供制冷剂在通过消音器的过程中被均匀化、并具有因减压时的节流部通过声和因减压所产生的压力脉动可由消音器衰减传递的效果的空调机。
另外,即使从压缩机排出的制冷剂的压力脉动是较大的场合,也可提供在通过设在与压缩机的排出部连接的配管中的消音器的过程中可降低脉动、具有可对朝向消音器以后的脉动传递予以衰减的效果的空调机。
另外,即使呈压力脉动的气体状制冷剂是流入冷凝器的场合,也可提供在通过设在冷凝器的制冷剂流入部的消音器的过程中可降低脉动、具有可将因制冷剂的压力脉动导致冷凝器盘管部中的制冷剂放射声予以衰减的效果的空调机。
另外,即使制冷剂是呈不规则的气液二相状态而流入蒸发器的场合,也可提供在通过设在蒸发器的流入部的消音器的过程中可使气体制冷剂及液态制冷剂整流化、均匀化、具有可将因气液二相制冷剂的不规则流动导致蒸发器盘管部中的制冷剂放射声予以衰减的效果的空调机。
另外,即使制冷剂呈不规则的气液二相状态而流入将制冷剂分流到冷凝器或蒸发器的分流部的场合,也可提供在通过设在分流部的制冷剂流入侧的消音器的过程中可使气体制冷剂及液态制冷剂整流化、均匀化、具有可将分流部中的液态制冷剂及气体制冷剂的不规则冲撞声予以衰减、并可将制冷剂适当地分流到冷凝器或蒸发器的效果的空调机。
权利要求
1.一种消音器,其特征在于,在用制冷剂配管将压缩机、冷凝器、减压装置、蒸发器连接形成的制冷循环内,兼有气液二相状态制冷剂的均匀化效果与噪音传递的降低效果。
2.如权利要求1所述的消音器,其特征在于,至少具有一个将两端间连通的孔设有多个的消音构件。
3.一种消音器,其特征在于,将连通两端间的孔设有多个的消音构件多个串联配置在截面积一样的制冷剂配管内,在互相的消音构件之间形成空间。
4.如权利要求2或3所述的消音器,其特征在于,将由相邻的消音构件形成的空间的容积设成不相同。
5.一种空调机,其特征在于,在减压装置的流入侧或流出侧的至少一方设置权利要求1、2或3所述的消音器。
6.一种空调机,其特征在于,在与压缩机的排出部连接的制冷剂配管上设置权利要求1、2或4所述的消音器。
7.一种空调机,其特征在于,在冷凝器的制冷剂流入侧或制冷剂流出侧的至少一方设置权利要求1、2或3所述的消音器。
8.一种空调机,其特征在于,在蒸发器的制冷剂流入侧或制冷剂流出侧的至少一方设置权利要求1、2或3所述的消音器。
9.一种空调机,其特征在于,在将制冷剂分流到冷凝器或蒸发器的分流部的制冷剂流入侧设置权利要求1、2或3所述的消音器。
10.如权利要求3所述的消音器,其特征在于,将消音构件设成将多根小直径管集束而形成的蜂窝式管子。
11.如权利要求3所述的消音器,其特征在于,将消音构件设成具有多个贯通孔的筒状体。
12.如权利要求3所述的消音器,其特征在于,将消音构件设成多孔质金属或多孔质陶瓷。
13.如权利要求3所述的消音器,其特征在于,利用制冷剂配管的伸缩、用绳系紧或用铆接而作为消音构件在制冷剂配管内的固定方法。
全文摘要
本发明在制冷剂配管106上的主要部位,设有多个任意的间隔而插入固定将小直径管1集束多根的蜂窝式管子2,形成消音器4a,对制冷剂的紊流予以整流化、均匀化,通过衰减压力脉动的传递,而降低噪音。本发明空调机所用的消音器无需额外空间,结构简单且容易装配加工。
文档编号G10K11/16GK1236083SQ99106709
公开日1999年11月24日 申请日期1999年5月14日 优先权日1998年5月14日
发明者渡部雅仁, 胜见佳正, 藤井泰树, 伊东正太郎, 谷川雅则, 浅井田康浩 申请人:松下电器产业株式会社, 松下精工株式会社