专利名称:薄膜音响共振器及其制造方法
技术区域本发明涉及利用压电体薄膜的电音响效果的薄膜音响共振器,更详细地说,本发明涉及可以作为通信仪器中的滤波器的构成部分的薄膜音响共振器及其制造方法。
另外,本发明涉及用于移动通信仪器的薄膜振子、薄膜VCO(电压控制振荡器)、薄膜滤波器、收发切换机以及各种传感器等在广泛区域内使用了压电体薄膜的元件。
背景技术:
由于减小电子仪器的成本和尺寸十分必要,所以人们一直尝试减小作为其电路构成部分的滤波器。盆式电话和小型无线电收音机这样的民用电子仪器,对内置的构成单元的大小和成本都有着严格的要求。这些电子设备的电路中所使用的滤波器,必须能精确地调谐频率。于是,人们一直不断努力制造廉价轻巧的滤波器。
另外,利用压电现象的电极被用于各种广泛的区域中。移动电话等可携带仪器正在不断小型化,耗电也在减少,作为在此机器中使用的RF用和IF用滤波器,表面弹性波(Surface Acoustic WaveSAW)元件的使用范围正在扩大。由于设计和生产技术的进步,SAW滤波器一直达到了用户所提出的严格的要求,但是,随着所用频率越来越高,其特性正在接近所能达到的极限,而既要求形成电极的微小化,又要求确保稳定的输出功率,大幅度的技术革新变得必要了。
另一方面,利用压电体薄膜的厚度震动的薄膜音响共振器,即薄膜腔声谐振器,或者叫做薄膜腔声谐振体(Thin Film Bulk AcousticResonator或Film Bulk Acoustic Resonator以下称之为FBAR),在设于基板的很薄的支撑膜上,形成主要为压电体的薄膜和用于驱动的电极,可以在GHz频带上做到基本共振。如果用FBAR制造滤波器,可以使其大幅度小型化,同时做到低损耗并工作于很宽的频带,还可以集成到半导体集成电路中,有希望应用于未来的超小型携带仪器。
薄膜音响共振器的一种简单的结构中,压电体(PZ)薄膜材料层夹在两个金属电极之间。这种夹层构造由架桥结构支撑,架桥构造的周边有支撑,中央吊在空中。加在两个电极间的电压一旦产生电场,压电体(PZ)薄膜将电能的一部分转化为具有声波形式的机械能。声波向和电场相同的方向传播,在电极/空气的交界面发生反射。以下将压电体简写为PZ。
发生机械共振时,通过PZ薄膜材料的电能/机械能转化特性,薄膜音响共振器可以实现电共振器的功能。从而,就可以用它构成滤波器。薄膜音响共振器所发生的机械共振频率,使传播声波的材料厚度与声波的半波长相等。声波频率与加在电极上的电信号的频率相等。因为声波的速度比光速小5~6位数,所制得的滤波器可以极其轻巧。所以,用于GHz频带的共振器,可以制成平面尺寸200微米以下,厚度不到数微米的构造。
层压以上所述的薄膜音响共振器以及所述夹层构造而形成的层压型薄膜音响共振器,即层压型薄膜腔声谐振器,以及滤波器(StackedThin Film Bulk Acoustic Wave Resonators and Filters以下称之为SBAR),夹层构造的中心部分是用溅镀法制作的厚度约1~2微米的压电体薄膜。上下方的电极作为电导线,夹着压电体薄膜,提供贯穿压电体薄膜的电场。压电体薄膜将电场能量的一部分变换为机械能。对应随着时间变化的所加电场能量,可以形成随着时间变化的“应力/形变”能量。
用于利用这种弹性波的共振器及滤波器等的压电体薄膜元件,由以下的方法制造。用硅等的半导体单晶体形成基板,或者在硅晶片等的上方形成多晶体金刚石或镍铬恒弹性刚等恒弹性金属膜而制成基板,在基板的表面上,根据各种薄膜形成方法,形成电介质薄膜、导电体薄膜或者由它们的层压膜形成的基础膜。在基础膜上形成压电体薄膜,再加上所需要的上方构造。各层膜形成后,或者所有的膜形成后,通过对各个膜进行物理处理或者化学处理,进行细微加工或者形成图案。
需要让FBAR或者SBAR作为薄膜音响共振器工作时,必须用架桥构造支撑包括压电体薄膜的夹层构造,形成可以将声波关进夹层构造的空气/结晶界面。夹层构造的制法,通常是,在基板表面上,将下方电极(底部电极)、压电体层(压电体膜、压电体薄膜层)、上方电极(顶部电极)按照这个顺序堆积起来。所以,在夹层构造的上方,已经存在空气/结晶界面。在夹层构造的下方也必须设置空气/结晶界面。为了得到夹层构造下方的空气/结晶界面,传统上有以下所示的几个方法。
第一个方法,如特开昭58-153412号公报或特开昭60-142607号公报所记载,通过蚀刻去除形成基板的晶片,若基板是由硅形成的,利用加热的KOH水溶液,将硅基板的一部分从背面蚀刻去除,形成孔。在基板的上表面上形成基础膜、底部电极、压电体薄膜以及顶部电极后,从基板的下方除去位于震动部分下方的基板部分。这样,所得到的共振器有着这样的形态夹层构造的边缘在硅基板的前侧,由孔周围的部分支撑。但是,这样贯穿晶片所开的孔,使得晶片非常纤细,而且非常容易被破坏。而且,以相对基板表面54.7度的蚀刻倾斜进行使用KOH的湿蚀刻,所得最终制品的量,即,晶片上FBAR/SBAR的成品率的提高很困难。例如,在厚度250μm的硅晶片上构成的约150μm×150μm横尺寸(平面尺寸)的夹层构造,需要约450μm×450μm的背面蚀刻孔开口。于是,只有约1/9的晶片可以利用于生产。通过异方蚀刻,从基板去除位于压电体薄膜振动部分下方的部分,制成上浮构造后,按元件一个个分离,得到成为PZ薄膜元件的薄膜音响共振器(也叫做压电薄膜共振体)。
在夹层构造下方设置空气/结晶界面的以往的第二种方法,如特开平2-13109号公报所记载,制造空气桥式的FBAR元件。通常,在最初设置牺牲层(Sacrificial layer),然后在该牺牲层上制造夹层构造。在制造过程的最后或者接近最后除去牺牲层。因为所有的处理都在晶片的前侧进行,所以,这个方法,既不需要晶片两侧对准位置,也不需要大面积的背面开口。
在特开2000-69594公报中,记载了使用磷酸石英玻璃(PSG)作为牺牲层的空气桥式FBAR/SBAR的构成和制造方法。在这公报中,PSG层堆积在硅晶片上。PSG是,使用硅烷以及P2O5在大约450℃为止的温度下、堆积,形成含磷量大约8%的软玻璃状物质。PSG可以在相对低温下进行堆积,而且,在稀释的H2O∶HF溶液中可以以非常高的速度蚀刻。
然而,在此公报中,表示PSG牺牲层的表面粗糙度的高度RMS(2次均方根)误差记载为小于0.5μm,但却没有小于0.1μm数量级的RMS误差的具体记载。这种0.1μm数量级的RMS误差,从原子级别来看是非常粗糙的凹凸不平。FBAR/SBAR形式的薄膜音响共振器中,需要结晶在电极平面上形成垂直的柱状晶并成长的压电体材料。特开2000-69594公报中,在PSG层的表面形成平行的导电薄片,此导电薄片的高度RMS误差记载为小于2μm,却没有小于0.1μm数量级的RMS误差的具体记载。这种0.1μm数量级的RMS误差,作为要形成薄膜音响共振器所用的压电体薄膜的表面,表面粗糙度是不充分的。曾进行了压电体薄膜的生长试验,但是由于在粗糙面上有许多凹凸不平,结晶向许多方向成长,所以所得到的压电体薄膜的结晶品质也不够好。
还有其他方法,设置适当的固体音响镜,代替所述的设置空气/结晶界面。这种方法,如特开平6-295181号公报所记载,在夹层构造下方,制造出音响布喇格反射镜形成的大音响阻抗。布喇格反射镜通过交互着层压高低不同的音响阻抗材料层而制得。各层的厚度固定为共振频率的波长的1/4。通过有充分的层数,可以使在压电体/电极界面的有效阻抗,比元件的音响阻抗高出很多,从而有效地关进压电体内的声波。用这种方法得到的音响共振器,由于在夹层构造的下方不存在空隙,叫做固体音响镜装配共振器(SMR)。
这种方法,虽然回避了前述第1和第2方法中,要制造周围固定、中心可以自由振动的膜的问题,但是这种方法也有许多问题。即,金属层会形成恶化滤波器电性能的寄生电容,所以不能用于布喇格反射镜层,于是用于布喇格反射镜的材料选择存在限制。由可能被利用的材料所制的层,其音响阻抗的差不大。所以,为了关进声波,需要多个层。这种方法中,必须精密地控制作用于各层的应力,因此制造过程十分复杂。而且,制作贯穿10乃至14层这样多层的通路很困难,所以用这个方法制得的音响共振器和其他能动因素的集成化并不方便。还有,至今为止的报告中,用这个方法得到的音响共振器,比起拥有空气桥的音响共振器,其有效结合系数非常低。其结果是,基于SMR的滤波器,比起使用空气桥式音响共振器的滤波器,其有效带宽比较窄。
另外,如上所述,在薄膜音响共振器中,对应随着时间变化的所加电场能量,在夹层构造中形成随着时间变化的“应力/形变”能量。于是,基板和夹层构造的下方电极之间的结合力较低时,基板和夹层构造会分离剥离,耐久性降低,也就是说薄膜音响共振器的寿命缩短。
所述特开2000-69594号公报中记载着,作为合适的电极材料为Mo,但对于作为基板的硅晶片等的结合力的提高,设有特别的记载。
另外,在例如特开平2-309708号公报等中记载着,有使用Au/Ti等的双层所制的物质构成下方电极层。这时,Ti层作为提高Au层和基板之间的结合性的层而存在。即,从薄膜音响共振器本身的工作来考虑,此Ti层并不是必要的电极层,但是若不形成Ti层、单独形成Au电极层的情况下,基板和Au电极层之间缺乏结合力,由于发生剥离而显著损害薄膜音响共振器工作的耐久性。
以上这种薄膜音响共振器中,除了往相对电极面直角方向传播所需要的纵向振动之外,还存在往与电极面平行方向传播的横向振动,此横向振动中,会使薄膜音响共振器所需的振动中激励杂散频率(スプリアス)降低共振器的性能。
本发明的目的是提供改良了性能的FBAR/SBAR。
本发明的另一个目的是,通过提高压电体(PZ)薄膜的结晶品质,提供电机械结合系数、音响品质系数(Q值)、温度特性等十分优良的高性能的FBAR/SBAR。
本发明另一个目的是,通过在上方电极的形状上下功夫,提供电机械结合系数、音响品质系数(Q值)、温度特性等十分优良的高性能的FBAR/SBAR。
还有,本发明的另一个目的是,提供特别减小了杂散频率激励的FBAR/SBAR。
本发明的另一个目的是,通过提高下方电极层和基板的结合性(接合强度),提高FBAR/SBAR的耐久性从而得到更长的寿命。
本发明还有其他目的是,不但提高下方电极层和基板的结合性,并且通过在下方电极层上,形成结晶品质和定向性良好的压电体薄膜,提供电机械结合系数、音响品质系数(Q值)等十分优良的高性能的FBAR/SBAR。
作为压电体薄膜元件所用的压电体,有氮化铝(AlN)、氧化锌(ZnO)、硫化镉(CdS)、钛酸铅[PT](PbTiO3)、钛酸锆酸铅[PZT](Pb(Zr,Ti)O3)等。特别是AlN,其弹性波的传播速度很快,适合作为压电体,用于工作于高频带的薄膜音响共振器或滤波器的压电薄膜共振体的压电体材料。
FBAR通过在薄膜中弹性波的传播产生共振,所以,不用说压电体薄膜的振动特性,电极层或基础膜的振动特性也会对FBAR的共振特性造成很大的影响。至今为止,为了使AlN薄膜能够适用于FBAR,进行了许多讨论。然而,还没有得到在GHz频带上能够充分发挥性能的薄膜音响共振器或薄膜滤波器。于是,十分期待能够实现这样的压电薄膜共振体即薄膜音响共振器不仅包含AlN,还包含电极层或基础膜的振动部分,其电机械结合系数、音响品质系数、以及共振频率的温度稳定性都十分优良。
因此,本发明的目的是,提供压电薄膜共振体即薄膜音响共振器,在发挥AlN薄膜的弹性波传播速度快这个特长的同时,不损害电机械结合系数以及音响品质系数,并提高共振频率的温度稳定性。
发明内容
根据本发明,作为实现以上目的的物体,提供薄膜音响共振器,其特征在于,它具有压电体层;接合在该压电体层第1表面的第1电极;接合在所述压电体层的所述第1表面相反侧的第2表面的第2电极,所述压电体层第1表面高度的RMS误差在25nm以下,优选在20nm以下。
对于本发明,高度的RMS误差指的是,日本工业规格JISB06012001“产品几何特性内容(GPS)-表面性状轮廓曲线方式-术语、定义以及表面性状参数”中记载的二次均方根粗细Rq(关于以下所记载的发明也一样)。
根据本发明,作为实现以上目的的物体,提供薄膜音响共振器,它具有压电体层;接合在该压电体层第1表面的第1电极;接合在所述压电体层的所述第1表面相反侧的第2表面的第2电极,其特征在于,所述第1电极位于所述压电体层一侧的表面的高度RMS误差在25nm以下,优选在20nm以下。
在本发明的一种形态中,所述压电体层的所述第2表面的高度RMS误差,为所述压电体层厚度的5%以下。在本发明的一种形态中,所述第2电极表面的起伏高度,为所述压电体层厚度的25%以下。
在本发明的一种形态中,所述第2电极拥有中央部分和比该中央部分厚的外围部分。在本发明的一种形态中,所述外围部分位于所述中央部分的周围形成框状。在本发明的一种形态中,所述第2电极的所述中央部分,其厚度误差为该中央部分的厚度的1%以下。在本发明的一种形态中,所述外围部分的厚度为上书中央部分高度的1.1倍以上。在本发明的一种形态中,所述外围部分位于所述第2电极外边缘起40μm距离的范围内。在本发明的一种形态中,所述中央部分表面的起伏高度为所述压电体层厚度的25%以下。
在本发明的一种形态中,由所述压电体层、所述第1电极和所述第2电极形成的夹层构造体,像跨过在基板表面形成的洼陷处一样,由所述基板支持着边缘部分。在本发明的一种形态中,所述基板的表面上,设置了跨越洼陷处形成的绝缘体层,在此绝缘体层上形成所述夹层构造体。
另外,根据本发明,作为实现以上目的的物体,提供薄膜音响共振器的制造方法,制造具有压电体层;接合在该压电体层第1表面的第1电极;和接合在所述压电体层的所述第1表面背面的第2表面的第2电极的薄膜音响共振器,其特征在于,基板表面形成洼陷,在该洼陷内填充牺牲层,研磨该牺牲层,使表面高度RMS误差为25nm以下、优选为20nm以下,经过所述牺牲层表面的一部分区域和所述基板表面的一部分区域,在这些区域上形成所述第1电极,在此第1电极上形成所述压电体层,在此压电体层上形成所述第2电极,从所述洼陷内蚀刻去除所述牺牲层。
在本发明的一种形态中,使所述第1电极厚度为150nm以下,此第1电极上表面的高度RMS误差为25nm以下、优选为20nm以下。
本发明的一种形态中,在所述牺牲层上形成第1电极之前,形成绝缘体层。
其次,根据本发明,作为实现以上目的的物体,提供薄膜音响共振器,它具有基板;夹层构造体,配置于该基板上,在基板侧的下方电极层和与其相对的上方电极层之间,夹入压电体薄膜层(压电体层)的形式层压形成,其特征在于,所述夹层构造体还拥有紧密电极层,此紧密电极层位于所述下方电极层和所述基板之间,并且与所述下方电极层相接合,在所述基板上形成的洼陷能够容许所述夹层构造体的振动,在此洼陷周围,该紧密电极层与所述基板相接合。
在本发明的一种形态中,所述紧密电极层形成环状,将所述紧密电极层和所述下方电极层接触的部分的平面面积设为S1,所述下方电极层的平面面积设为S2时,关系0.01×S2≤S1≤0.5×S2成立,所述上方电极层位于对应所述紧密电极层内侧区域的位置。
在本发明的一种形态中,所述紧密电极层的构成材料中,包含从Ti、Cr、Ni、Ta中选出的至少一种,所述下方电极层的构成材料中,包含从Au、Pt、W、Mo中选出的至少一种,所述压电体薄膜层由AlN或者ZnO构成。
另外,根据本发明,作为实现以上目的的物体,提供薄膜音响共振器的制造方法,其特征在于,在形成洼陷的基板表面上,在所述洼陷的周围形成紧密电极层,在与所述洼陷对应的、位于该紧密电极层内侧的区域中,在所述基板表面上形成牺牲层,研磨该牺牲层的表面使其平滑,高度RMS误差在25nm以下、优选为20nm以下,在所述牺牲层以及所述紧密电极层的上方,按顺序形成下方电极层、压电体薄膜层以及上方电极层,然后去除所述牺牲层。
在本发明的一种形态中,所述牺牲层的形成过程中,先形成牺牲层,使其覆盖所述基板和所述紧密电极层,然后研磨该牺牲层材料的层,使得所述紧密电极层的表面能够露出来,通过蚀刻去除所述牺牲层,此牺牲层使用玻璃或者塑料材料。
本发明的发明者们发现,钼(Mo)的弹性率比金、铂、铝以及铜等一般的电极材料大,热弹性损失也明显小,在以AlN为主要成分的压电体薄膜的两面上,通过形成以钼(Mo)为主要成分的电极,并且,氧化硅(SiO2)或者氮化硅(Si3N4)有着与所述压电体薄膜的共振频率的温度系数异号的温度系数,通过使以它作为主要成分的绝缘层形成于振动部分之中,可以维持高的电机械结合系数和高的音响品质系数,并且改善共振频率的温度稳定性,于是完成了本发明。另外,还发现,以氮化铝为主要成分的压电体薄膜的厚度设为t,以所述氧化硅或氮化硅为主要成分的绝缘层的厚度(绝缘层为多层时,取其厚度之合)设为t’,通过设定各层的厚度使其满足0.1≤t’/t≤0.5、优选为0.2≤t’/t≤0.4,可以实现高性能的FBAR,既有高的电机械结合系数和高的音响品质系数,又有显著提高的温度稳定性。
即,根据本发明,作为实现以上目的的物体,提供压电薄膜共振体,具有基板和形成于该基板上的压电层压构造体,振动部分包含所述压电层压构造体的一部分而构成,所述压电层压构造体通过按顺序在所述基板一侧层压底部电极(下方电极)、压电体膜(压电体层)以及顶部电极(上方电极)形成,所述基板在对应所述振动部分的区域中形成容许该振动部分振动的空隙,其特征在于,所述压电体膜以氮化铝为主要成分,所述底部电极和所述顶部电极以钼为主要成分,绝缘层以氧化硅或者氮化硅为主要成分,所述振动部分包含与所述压电层压构造体接合的至少一层绝缘层的至少一部分。
在本说明书中,术语“压电薄膜共振体”和术语“薄膜音响共振器”意义相同。
在本发明的一种形态中,所述压电体膜的厚度t、与所述至少一层绝缘层的厚度t’,满足关系0.1≤t’/t≤0.5。
在本发明的一种形态中,所述压电体膜中所述氮化铝的含量为90当量%以上。在本发明的一种形态中,所述绝缘层中,所述氧化硅或氮化硅的含量为50当量%(摩尔%)以上。在本发明的一种形态中,所述底部电极以及所述顶部电极中,所述钼的含量为80当量%(摩尔%)以上。
在本发明的一种形态中,所述绝缘层中的一个形成于所述基板表面上。在本发明的一种形态中,所述绝缘层中的一个形成于所述压电层压构造体的与所述基板相反一侧的表面上。
在本发明的一种形态中,所述基板由硅单晶体形成。在本发明的一种形态中,所述顶部电极由互相隔离的第1电极部分和第2电极部分构成。
在本发明的一种形态中,从2.0GHz附近的共振频率及反共振频率的测量值中,求得电机械结合系数为4.0~6.5%,音响品质系数为750~2000,共振频率的温度系数为-20~20ppm/℃。
并且,根据本发明,可以提供使用如上所述的压电薄膜共振体构成的VCO(电压控制振荡器)、滤波器以及收发切换机,可以显著提高它们在1GHz以上的高频处的性能。
图1是说明作为基于本发明的薄膜音响共振器的FBAR的基本构成的模式截面图。
图2是说明作为基于本发明的薄膜音响共振器的SBAR的基本构成的模式截面图。
图3是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图4是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图5是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图6是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图7是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图8是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图9是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图10是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图11是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图。
图12是基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的上方电极的平面图。
图13是基于本发明的FBAR的模式截面图。
图14是基于本发明的SBAR的模式截面图。
图15是说明基于本发明的FBAR及其制造方法的模式截面图。
图16是说明基于本发明的FBAR及其制造方法的模式截面图。
图17是说明基于本发明的FBAR及其制造方法的模式截面图。
图18是说明基于本发明的FBAR及其制造方法的模式截面图。
图19是说明基于本发明的FBAR及其制造方法的模式截面图。
图20是说明基于本发明的FBAR及其制造方法的模式截面图。
图21是说明基于本发明的FBAR及其制造方法的模式截面图。
图22是表示基于本发明的压电薄膜共振体的实施方式的模式平面图。
图23是图22的X-X截面图。
图24是表示基于本发明的压电薄膜共振体的实施方式的模式平面图。
图25是图24的X-X截面图。
图26是表示基于本发明的压电薄膜共振体的实施方式的模式平面图。
图27是图26的X-X截面图。
图28是表示基于本发明的压电薄膜共振体的实施方式的模式平面图。
图29是图28的X-X截面图。
实施发明的最佳方式以下,参照
本发明的实施方式。
图1和图2是模式截面图,分别说明作为基于本发明的薄膜音响共振器的FBAR以及SBAR的基本构成。
在图1中,FBAR20具有上方电极21和下方电极23,它们夹住压电体(PZ)材料的层22的一部分,形成夹层构造。适合的PZ材料是氮化铝(AlN)或者氧化锌(ZnO)。用于FBAR20的电极21、23,由钼制作最好,也可以使用其他材料。
这个元件利用了薄膜PZ材料中堆积弹性音响波的作用。由所加电压在两个电极21、23之间产生电场后,PZ材料将电能的一部分转化为具有声波形式的机械能。声波向和电场相同方向传播,并在电极/空气界面被反射。
发生机械共振时,通过PZ薄膜的电能/机械能转化特性,薄膜音响共振器可以实现电共振器的功能。从而,元件可以作为陷波滤波器工作。元件所发生的机械共振频率,使传播声波的材料厚度与该声波的半波长相等。声波的频率就是加在电极21、23之间的电信号的频率。因为声速比光速小5~6位数,所制得的滤波器可以极其轻巧。所以,用于GHz频带的共振器,可以制成平面尺寸约为100微米,厚度为几微米数量级的构造。
接下来,参照图2说明SBAR。SBAR40能提供与带通滤波器类似的电性能。SBAR40基本上是机械式结合的两个FBAR滤波器。以压电体层41的共振频率通过电极43、44的信号,将音响能传给压电体层42。压电体层42内的机械振动,转化为通过电极44、45的电信号。
图3~图8是模式截面图(图3~图6,图8)以及模式平面图(图7),说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式。
首先,如图3所示,在用于制作集成电路的普通的硅晶片51上,利用蚀刻形成洼陷。洼陷的深度适合为1.5~30μm、优选为1.5~10μm或者根据情况有时为3~30μm。考虑位于FBAR的夹层构造之下的空洞的深度只须能容纳压电体层发生的位移,空洞的深度有几μm就很充分了。
在晶片51的表面通过热氧化形成氧化硅的薄层53,这样,在后来的工序中,磷不会从在其上方形成的牺牲层的PSG扩散到晶片51内。这个薄层53,也可以使用用低压CVD法形成的氮化硅层代替氧化硅层。这样通过抑制磷向晶片内的扩散,防止了硅晶片变成导体,不会对制成的元件的电工作产生不良影响。像这样在晶片51的表面形成氧化硅或氮化硅薄层53的物质,作为基板使用。即,图3表示了在基板表面形成洼陷52的状态,洼陷的深度优选为1.5~30μm、更优选为1.5~10μm或者根据情况有时为3~30μm。
接下来,如图4所示,在基板的氧化硅或氮化硅薄层53上堆积磷酸石英玻璃(PSG)层55。PSG,大约450℃为止的温度下,堆积硅烷以及成为P2O5原料的物质,形成含磷量大约8%的软玻璃状物质。作为硅烷的例子,有硅烷(MonosilaneSiH4)、三氯硅烷(TrichlorosilaneSiHCl3)、四甲氧基硅烷(Silicon tetramethoxideSi(OCH3)4)、四乙氧基硅烷(Silicon tetraethoxideSi(OC2H5)4)等。作为成为P2O5原料的物质的例子,除了P2O5以外,还有磷化氢(PH3)、亚磷酸三甲酯(Trimethyl phosphiteP(OCH3)3)、亚磷酸三乙酯(TriethylphosphiteP(OC2H5)3)、磷酸三甲酯(TrimethylphosphatePO(OCH3)3)、磷酸三乙酯(Triethyl phosphatePO(OC2H5)3)等。这个低温制造过程,此行业的从事人员都知道。PSG可以在相对低温下进行堆积,而且,在稀释的H2O∶HF溶液中可以以非常高的蚀刻速度被蚀刻,是非常洁净的惰性材料,所以十分适合作为牺牲层的材料。在后续工序中实行的蚀刻中,以10∶1的稀释比例可以得到每分钟约3μm的蚀刻速度。
刚刚堆积的PSG牺牲层55的表面,从原子标准看非常粗糙。所以,刚刚堆积的PSG牺牲层55的表面,还不能作为形成音响共振器的底座。FBAR/SBAR形式的音响共振器,需要结晶能在电极面上形成垂直的柱状晶并成长的压电材料。用含有细微的研磨粒子的研磨浆将PSG牺牲层55表面磨光滑,可以形成优良的结晶的压电材料薄膜。
即,如图5所示,将PSG牺牲层55表面用粗加工浆研磨,使其全体形成平面,除去位于洼陷52外侧的PSG层部分。然后,将剩下的PSG层55用含有更加细微的研磨粒子的浆研磨。如果多花研磨时间也可以的话,也可以直接用更加细微的浆实行所述两个研磨步骤。目标是完成镜面加工。
在本发明中,研磨PSG层以前,最好可以高温热处理PSG层,能够做到使其致密并软溶。这个PSG层的热处理,可以用RTA法(RapidThermal Anneal)进行。这是在氮气环境或者氮气-氧气混合环境中以750℃~950℃的温度下进行。另外,高温热处理用扩散炉或者灯照加热进行也可以。在本发明中,通过高温热处理PSG层,可以使PSG层致密的同时,提高其硬度。由于提高了硬度,在后续的CMP(化学机械研磨)中,可以抑制在PSG膜表面出现刻痕等研磨划伤,使表面有良好的平坦性。
像这样残留在对应洼陷52位置的PSG层的基板的清洁也很重要。浆会在晶片上留下少量的二氧化硅粉末,必须除去这些粉末。本发明的适合的实施方式中,用普立特(Polytex(商标)ロデ一ル·ニッタ公司)这样的带有坚固的垫子的第2研磨工具进行粉末去除。作为这时用的润滑剂,使用去离子水,从研磨后到完成最终清洁步骤的准备之间,将晶片放置在去离子水中。要注意,在最后的研磨步骤和最后的清洁步骤之间,不要让基板干燥。最后的清洁步骤是将基板浸泡到有着各种各样化学药品的一系列的的水槽中。向各水槽加上超声波搅拌。这样的清洁方法,此行业的从事人员都知道。
研磨剂由二氧化硅的微粒构成。在本发明的优选的实施方式中,利用二氧化硅微粒的氨主体浆(Rodel Klebosol#30Nロデ一ル·ニッタ公司)。
以上的说明中显示了特定的研磨和清洁方式,但是只要能够实现所需要的平滑的表面,任一种研磨或清洁方式都可以使用。在本发明的优选的实施方式中,最终的表面在原子显微镜探测器下,所测的高度RMS误差在25nm以下(最好是20nm以下)。
像这样把表面弄干净后,如图6所示,堆积夹层构造体60的下方电极61。适用于下方电极61的材料是钼(Mo)。其实下方电极61也可以用其他材料构成,比如Al、W、Au、Pt或者是Ti。因为钼有很低的热弹性损失,所以比较适合。比如,钼的热弹性损失约为铝的1/56。
下方电极61的厚度也很重要。较厚的层比较薄的层表面变得更加粗糙。为了压电体层62的堆积,维持光滑的表面对于得到的共振器的性能十分重要。所以,下方电极的厚度适合在150nm以下。Mo适合用溅射法堆积。这样,得到表面高度RMS误差25nm以下(优选20nm以下)的Mo层。
堆积完下方电极61后,堆积压电体层62。适合做压电体层62的材料是AlN或者ZnO,这也用溅射法堆积。在本发明的适当的实施方式中,压电层62的厚度在0.1μm到10μm之间(优选0.5μm~2μm)。在压电体层62的上表面,高度RMS误差优选在压电体层厚度(平均值)的5%以下。
最后堆积上方电极63。上方电极63也和下方电极61同样材料构成,适合用Mo。
这样,由下方电极61、压电体层62以及上方电极63构成,并且制成所要的形状的夹层构造体60形成后,如图7所示,从夹层构造体60的两端或者是从没有被夹层构造体覆盖而露出的牺牲层55部分,用稀释的H2O∶HF溶液蚀刻,这样夹层构造体60下方的PSG也被除去。这样,如图8所示,在洼陷52上方留下架桥型的夹层构造体60。即,夹层构造体60,像跨过在基板表面形成的洼陷52一样,由基板支撑其边缘部分。
如上所述得到的FBAR中,沿着牺牲层55的表面(高度RMS误差为25nm以下(优选20nm以下)),在其上方形成的下方电极61的下表面的高度RMS误差为25nm以下(优选20nm以下),并且由于该下方电极61的厚度很薄,他的上表面高度RMS误差也为25nm以下(优选20nm以下)。然后,顺应这个下方电极61的上表面,在其上方形成的压电体层62的下表面的高度RMS误差为25nm以下(优选20nm以下)。下方电极61的光滑的上表面,即使没有形成作为压电体层62的生长核的结晶构造,所形成的压电体层62也能形成非常规整正确的c轴走向的构造,拥有优良的压电特性。
图9~图10是模式截面图,说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的其他实施方式。在这个实施方式中,在关于图3~5所说明的工序之后,如图9所示,再形成绝缘体层54。绝缘体层54可以是比如SiO2膜,用CVD法堆积。另外,要是考虑对于去除牺牲层55的蚀刻液的耐腐蚀性,作为绝缘体层54,使用用低压CVD法形成的Si3N4膜比SiO2膜更好。用SiO2膜作为绝缘体层54的情况下,为了取出牺牲层55进行蚀刻的时候,只要在SiO2膜的露出面上进行适当的保护即可。
在其上方,进行关于图6所说明的工序,形成夹层构造体60。接下来,如图10所示,进行关于图7和图8所说明的工序,得到FBAR。这时,为了蚀刻去除牺牲层55,在夹层构造体60的两端、或者是没有被夹层构造体69覆盖而露出的绝缘体层54的一部分,也是牺牲层55的上方部分,形成适当大小的开口,从此开口加入蚀刻液。
本实施方式的FBAR中,在夹层构造体60和空洞52之间有绝缘体层54,振动部分的构成除了夹层构造体60还有绝缘体层54,所以此振动部分的强度提高,还可以改善振动部分有关振动的频率温度特性。
绝缘体层54的厚度t′适合在50~1000nm范围之间。这是因为,绝缘体层54厚度t’对于压电体层62的厚度t的比t’/t适合在0.1以上0.5以下的范围内,而压电体层62的厚度t如上所述适合在500nm~2000nm范围之间。比例t’/t适合在0.1以上0.5以下的范围内的原因是,通过使比例t’/t在0.1以上,可以提高包含绝缘体层54的振动部分的振动频率温度特性的改善效果,通过使比例t’/t为0.5以下,可以防止包含绝缘体层54的振动部分的振动相关的电机械结合系数和音响品质系数(Q值)的降低。绝缘体层54上表面的高度RMS误差在25nm以下(优选为20nm以下)。
在以上的实施方式中,为了得到更好的音响品质系数(Q值),绝缘体层54、下方电极61、压电体层62以及上方电极63的各层的厚度均一性必须更加良好。此厚度均一性反映在上方电极63的表面起伏高度上(即,上方电极63的表面起伏高度较大时,至少有一层的厚度均一性低)。于是,为了得到更高的音响品质系数(Q值),上方电极63的表面起伏高度,最好在压电体层62的厚度的25%以下。而且,从其他的观点看,上方电极63的表面起伏高度最好在测定长度的0.5%以下(测定长度为150μm时,起伏高度在0.75μm以下)。
以上的实施方式是关于FBAR的。然而,本行业从事人员从以上的说明中,应该明了可以用同样的制造过程制作SBAR。对于SBAR的情况,需要堆积另一个压电体层(第2压电体层)以及其上方的电极(第2上方电极)。因为第2压电体层在上述实施方式所示的“FBAR”的上方电极之上形成,所以此上方电极的厚度也要保持在150nm以下,并且形成为了堆积第2压电体层的适当的表面(和第1压电体层的下方电极表面一样)。
图11为模式截面图,说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的其他实施方式,图12是其上方电极的平面图。这个实施方式中,只有上方电极63的形状与上述有关图3~8所作说明的实施方式不同。
本实施方式中,上方电极6位于中央部分631,并在此中央部分周围形成框状,拥有比中央部分631更厚的外围部分632。中央部分631和外围部分632的界限由高度差形成。
外围部分632的厚度适合在中央部分631的厚度的1.1倍以上。还有,中央部分631的厚度变化适合在此中央部分厚度(平均值)1%以下。上方电极63的尺寸a,比如是100μm。外围部分632位于从上方电极63的外边缘到距离b为止的范围,距离b比如是到40μm为止的值。
通过这样构造上方电极,可以抑制上方电极外围部分发生横向的振动,防止音响共振器的振动中重叠出现多余的杂散频率振动。这样的结果是可以改善音响共振器以及滤波器的共振特性和品质系数。
本实施方式中,为了得到更好的音响品质系数(Q值),上方电极63的中央部分631的表面起伏高度,适合在压电体层62的厚度的25%以下。另外,从其他观点看,上方电极63的中央部分631的表面起伏高度,适合在测定长度的0.2%以下。
本发明的所述实施方式中,使用了PSG构成的牺牲层,其实牺牲层也可以用其他材料。比如说BPSG(Boron-Phosphor-Silicate-Glass硼-磷-硅-玻璃),还可以利用自旋玻璃等其他形态的玻璃。除此之外,还有可以通过吐丝旋压堆积的,聚乙烯、聚丙烯、聚苯乙烯这样的塑料。这些材料堆积后的表面,从原子标准来看不平滑,所以用它们构成牺牲层时,也像PSG牺牲层一样,通过研磨使表面平滑是很重要的。这些牺牲层,可以用有机材料或者O2等离子体蚀刻去除。
接着,图13和图14分别是作为基于本发明的薄膜音响共振器的FBAR和SBAR的截面图。
在图13中,FBAR20具有上方电极层21、下方电极层23以及紧密电极层24,这些电极层夹住压电体薄膜层22的一部分,形成夹层构造。压电体薄膜层22的优选材料是氮化铝(AlN)或者氧化锌(ZnO)。用于FBAR20的紧密电极层24,优选由Ti、Cr、Ni、Ta制成,不过也可以使用其它材料。上方和下方的电极层21、23,优选由Au、Pt、W、Mo制成,不过也可以使用其它材料。夹层构造这样设置位于在基板11的上表面形成的洼陷周围,使紧密电极层24位于此基板11上。
这个元件利用了压电体薄膜层中堆积弹性音响波的作用。由所加电压在两个电极21、23之间产生电场后,压电体薄膜将电能的一部分转化为具有声波形式的机械能。声波向和电场相同方向传播,并在电极/空气界面被反射。
发生机械共振时,通过PZ材料的电能/机械能转化特性,薄膜音响共振器可以实现电共振器的功能。从而,元件可以作为凹陷滤波器工作。元件所发生的机械共振频率,使传播声波的材料厚度与声波的半波长相等。声波频率与加在电极21、23上的电信号的频率相等。因为声波的速度比光速小5~6位数,所制得的滤波器可以极其轻巧。用于GHz频带的共振器,可以制成平面尺寸约100μm、厚度为几μm这一数量级的构造。
接下来,参照图14说明SBAR。SBAR40能提供类似带通滤波器的电性能。SBAR40基本上是机械式结合的两个FBAR滤波器。以压电体薄膜层42的共振频率通过紧密电极层24、下方电极层45、电极层44的信号,将音响能传递给压电体薄膜层41。压电体薄膜层41内的机械振动,转化为通过电极层44和电极层43的电信号。
图15~图21是说明作为基于本发明的薄膜音响共振器的FBAR的制造方法、以及基于此得到的FBAR的实施方式的模式截面图(图15~图20)和模式平面图(图21)。
首先,如图15所示,在用于制作集成电路的普通的硅晶片51上,利用蚀刻形成洼陷。洼陷的深度优选为1.5~30μm、更优选为1.5~10μm或者根据情况有时为3~30μm。考虑位于FBAR的夹层构造之下的空洞的深度只须能容纳压电体薄膜层发生的位移,空洞的深度有几μm就很充分了。
在晶片51的表面通过热氧化形成氧化硅的薄层53,这样,在后来的工序中,磷不会从在其上方形成的牺牲层的PSG扩散到晶片51内。这个薄层53,也可以使用用低压CVD法形成的氮化硅层代替氧化硅层。这样通过抑制磷向晶片51内的扩散,防止了硅晶片变成导体,不会对制成的元件的电工作产生不良影响。像这样在表面形成氧化硅或氮化硅的薄层53的晶片51,作为基板使用。即,图15表示了在基板表面形成洼陷52的状态,洼陷的深度优选为1.5~30μm、更优选为1.5~10μm或者根据情况有时为3~30μm。
其次,如图16所示,在基板上接合形成紧密电极层161使其包围洼陷52。紧密电极层161的上表面面积(平面面积)设为S1,在其上方形成的下方电极层的平面面积设为S2时,S1的范围优选为0.01×S2≤S1≤0.5×S2。S1<0.01×S2的情况下,基板和下方电极的结合力减弱,本发明的效果有不能充分发挥的倾向。并且,S1>0.5×S2的情况下,紧密电极层161会对薄膜音响共振器的动作产生影响,有不能得到良好的共振特性的倾向。紧密电极层161的厚度只要能充分固定在其上方形成的下方电极层就可以,比如在20nm到1μm的范围内就可以。另外,紧密电极层161的材料中,优选包含从Ti、Cr、Ni、Ta中选出的至少一种。
如上所述,通过把紧密电极层161设置于基板的洼陷52的周围,可以抑制薄膜音响共振器发生的横向振动,防止在薄膜音响共振器的振动中重叠多余的杂散频率震动。这样,可以改善薄膜音响共振器以及滤波器的共振特性和品质系数。另外,由于在由Au、Pt、W、Mo等形成的下方电极层的中央部分下方,没有由Ti、Cr、Ni、Ta等形成的紧密电极层161,所以摇摆曲线的衍射半峰值宽度(FWHM)很小,可以形成具有优越的定向性和结晶品质的压电体薄膜层。通过压电体薄膜层的高定向性和良好结晶化,可以改善本发明的薄膜音响共振器以及滤波器的共振特性和品质系数。
那么,接下来,如图17所示,在已经形成紧密电极层161的基板的氧化硅或氮化硅的薄层53上,堆积由PSG形成的牺牲层55。如上所述,PSG是,大约450℃为止的温度下,堆积硅烷以及成为P2O5原料的物质,形成的含磷量大约8%的软玻璃状物质。作为硅烷的例子,可以举出硅烷(MonosilaneSiH4)、三氯硅烷(TrichlorosilaneSiHCl3)、四甲氧基硅烷(Silicon tetramethoxideSi(OCH3)4)、四乙氧基硅烷(Silicon tetraethoxideSi(OC2H5)4)等等。作为成为P2O5原料的物质的例子,除了P2O5以外,还有磷化氢(PH3)、亚磷酸三甲酯(Trimethyl phosphiteP(OCH3)3)、亚磷酸三乙酯(Triethyl phosphiteP(OC2H5)3)、磷酸三甲酯(Trimethyl phosphatePO(OCH3)3)、磷酸三乙酯(Triethyl phosphatePO(OC2H5)3)等等。这个低温制造过程,此行业的从事人员都知道。PSG可以在相对低温下进行堆积,而且,是在稀释的H2O∶HF溶液中可以以非常高的蚀刻速度被蚀刻的、非常洁净的惰性材料,所以十分适合作为牺牲层的材料。在后续工序中实行的蚀刻中,以10∶1的稀释比例可以得到每分钟约3μm的蚀刻速度。
刚刚堆积的PSG牺牲层55的表面,从原子标准看非常粗糙。所以,刚刚堆积的PSG牺牲层55的表面,还不能作为形成音响共振器的底座。FBAR/SBAR形式的薄膜音响共振器,需要结晶能在电极面上形成垂直的柱状晶并成长的压电体。通过用含有细微的研磨粒子的研磨浆将PSG牺牲层55表面磨光滑,可以形成具有有良的定向性以及结晶品质的下方电极层,从而可以形成具有有良的定向性以及结晶品质的压电体薄膜层。
即,如图18所示,将PSG牺牲层55表面用粗浆加工研磨,使其形成平面,除去对记在紧密电极层161上的PSG层部分。然后,将剩下的PSG层55用含有更加细微的研磨粒子的精密加工浆研磨。作为代替的方法,如果可以多花研磨时间,也可以直接用一种细微的精密加工浆实行所述两个研磨步骤。目标是实现“镜面”状加工(镜面加工)。
在本发明中,研磨PSG层以前,最好可以高温热处理PSG层,使其致密化并软溶。这个PSG层的热处理,可以用RTA法(RapidThermal Anneal)进行。这是在氮气环境或者氮气-氧气混合环境中以750℃~950℃的温度下进行。另外,高温热处理用扩散炉或者灯照加热进行也可以。在本发明中,通过高温热处理PSG层,可以使PSG层在成为更加致密的构造的同时,提高其硬度。由于提高了硬度,在后续的CMP(化学机械研磨)中,可以抑制再PSG膜表面出现刻痕等研磨划伤,可以很好地使表面平坦化。
像这样实施了研磨后的基板的清洁也很重要。浆会在基板上留下少量的二氧化硅粉末,必须除去这些粉末。本发明的优选的实施方式中,用普立特(Polytex(商标)ロデ一ル·ニッタ公司)这样的带有坚固的垫子的第2研磨工具进行粉末去除。作为这时用的润滑剂,使用去离子水,从研磨到完成最终清洁步骤的准备之间,将基板放置在去离子水中。要注意,在最后的研磨步骤和最后的清洁步骤之间,不要让基板干燥。最后的清洁步骤由将基板浸泡到有着各种各样化学药品的一系列的的水槽中构成。向各水槽加上超声波搅拌。这样的清洁步骤,此行业的从事人员都知道。
研磨剂由二氧化硅的微粒构成。在本发明的优选的实施方式中,利用二氧化硅微粒的氨主体浆(Rodel Klebosol#30Nロデ一ル·ニッタ公司)。
以上的说明中显示了特定的研磨和清洁方式,但是只要能够实现所需要的平滑的表面,任一种研磨或清洁方式都可以使用。在本发明的优选的实施方式中,最终的表面在原子显微镜探测器下,所测的高度RMS误差在25nm以下,优选是20nm以下,更优选为10nm以下的表面粗糙度。
如上所述平滑表面,并且用等离子体蚀刻将紧密电极层161的表面进行清净化处理后,如图19所示,堆积夹层构造60的下方电极层162。下方电极层162的优选材料是Au、Pt、W、Mo。此下方电极层162的定向性以及结晶性,会反映于在其上方形成的压电体薄膜层163的定向性和结晶品质上。
下方电极层162的厚度也很重要。较厚的层比较薄的层表面变得更加粗糙。如上所述,为了压电体层62的堆积,维持光滑的表面对于得到的共振器的性能十分重要。所以,下方电极层162的厚度优选在200nm以下。Au、Pt、W、Mo优选用溅射法堆积。通过这个方法,可以得到具有表面高度RMS误差25nm以下、优选为20nm以下、更优选为10nm以下的表面粗糙度的下方电极层162。
堆积完下方电极层162后,除去残留在下方电极层162周围的PSG牺牲层,堆积压电体薄膜层163。压电体薄膜层163的优选材料是AlN或者ZnO,这也用溅射法堆积。在本发明的优选的实施方式中,压电体薄膜层163的厚度在0.1μm到10μm之间,优选为0.5μm~2μm之间。
最后堆积上方电极层164。上方电极层164也和下方电极层162以同样材料构成,优选用Au、Pt、W、Mo构成。
这样,由紧密电极层161、下方电极层162、压电体薄膜层163以及上方电极层164构成,并且制成所要的形状的夹层构造体60形成后,通过RIE(反应性离子蚀刻)等干蚀刻法,形成从上方电极层164的周边部分朝向下方、通过上方电极层164、压电体薄膜层163以及下方电极层162后到达牺牲层55的贯穿小孔,通过用稀释的H2O∶HF溶液蚀刻,除去夹层构造60下方的PSG。这样,如图21及图21所示,在洼陷52上方留下架桥型的夹层构造体。即,夹层构造体60,紧密电极层161位于在基板表面形成的洼陷52周围,象跨过洼陷52一样,由基板支撑其边缘部分。
以上这样得到的薄膜音响共振器中,夹层构造60的周边部分多了紧密电极层161这一部分质量,可以抑制横向振动的发生,防止在薄膜音响共振器的振动中重叠多余的杂散频率振动。并且,由于在洼陷52周围形成了紧密电极层,过去无法单独堆积在空洞上的、由Au、Pt等制成的下方电极层可以堆积,由W、Mo等制成的下方电极层和底部基板的结合性也改善了。
另外,根据以上这种薄膜音响共振期的制造方法,由Au、Pt、W、Mo等制成的下方电极层162的中央部分形成于二氧化硅玻璃、磷酸石英玻璃等玻璃质地的牺牲层上,比起以往的在Ti等构成的结合层上全面性形成Au、Pt、W、Mo等电极层的情况,其下方电极层的定向性和结晶性都更优良,可以得到摇摆曲线的衍射半峰值宽度(FWHM)很小的高质量结晶膜。通过这样改善下方电极层162的定向性和结晶品质,可以实现在其上方形成的压电体薄膜层的定向性和结晶品质的提高。
以上的实施方式是涉及FBAR的。但是对于从事本行业的人员,从以上说明中应该可以明了,同样的过程可以用于制造SBAR。对于SBAR的情况,必须堆积另一个压电体层(第2压电体层)。第二压电体层在所述实施方式所说明的“FBAR”的上方电极层之上形成,所以,此上方电极层的厚度也必须维持比如100nm,以提供适合堆积第2压电体层的表面状态。比如,最好是拥有高度RMS误差在25nm以下、优选在20nm以下、更优选的在10nm以下的表面粗糙度的平滑表面。
本发明的所述实施方式中,使用了PSG构成的牺牲层,其实牺牲层也可以用其他材料。比如说BPSG(Boron-Phosphor-Silicate-Glass硼-磷-硅-玻璃),还可以利用自旋玻璃等其他形态的玻璃。除此之外,还有可以通过旋压堆积的,聚乙烯、聚丙烯、聚苯乙烯这样的塑料。用这些材料构成牺牲层时,也像PSG牺牲层一样,用研磨使表面平滑是很重要的。这些牺牲层,可以用有机去除材料或者O2等离子体蚀刻去除。
接下来,图22是说明基于本发明的压电薄膜共振体(薄膜音响共振器)的实施方式的模式平面图,图23是其X-X截面图。在这些图中,压电薄膜共振体111具有基板112、在该基板112的上表面上形成的绝缘层13、以及接合于此绝缘层13上表面的压电层压构造体14。
压电层压构造体14由以下构成形成于绝缘层13的上表面的底部电极15、形成于基础膜13的上表面并使其覆盖此底部电极15的一部分的压电体膜16、以及形成于此压电体膜16的上表面的顶部电极17。基板112上,形成了作为空隙的导通孔120。绝缘层13的一部分朝着导通孔120裸露。此绝缘层13的裸露部分和对应于此压电层压构造14的一部分构成了振动部分(振动隔膜)121。另外,底部电极15以及顶部电极17具有形成于对应振动部分121的区域中的主体部分15a、17a,连接此主体部分15a、17a和外部电路的端子部分15b、17b。端子部分15b、17b位于对应振动部分121的区域之外。
作为基板112,可以利用Si(100)单晶体等单晶体,或者Si单晶体等基材表面形成硅、金刚石等其他多结晶膜的物质。基板112的导通孔120的形成方法,示例中有从基板下表面一侧的异方性蚀刻法。不过,形成于基板112的空隙,不仅限于基于导通孔120的空隙,只需要能容许振动部分121的振动就可以,也可以是在与此振动部分121对应的基板上表面上形成的凹陷部分。
绝缘层13是以氧化硅(SiO2)或者氮化硅(SiNx)为主成分的电介质膜。电介质膜可以由单层形成,也可以加上为了提高结合性的层由复数层形成。作为由复数层形成的电介质膜,可以举出在SiO2层的一面或双面加上氮化硅的电介质膜。绝缘层13的厚度为比如0.2~2.0μm。作为绝缘层13的形成方法,可以举出由硅形成的基板112的表面的热氧化法、或者CVD法、或者低压CVD法。
底部电极15和顶部电极17,是以钼(Mo)为主成分的(优选含有量为80当量%以上)导电膜。由于,Mo的热弹性损失很低(Al的大约1/56),特别适合构成在高频率下振动的振动部分。不仅是Mo单质,也可以使用以Mo为主成分的合金。底部电极15和顶部电极17的厚度为例如50~200nm。底部电极15和顶部电极17的形成方法,可以举出溅射法或者蒸着法,还可以根据需要为了形成所要的形状使用照相平板印刷技术。
压电体膜16由以AlN为主成分的(优选含有量90当量%以上)压电膜形成,其厚度为比如0.5~2.5μm。作为压电体膜的形成方法,可以举出反应性溅射法,还可以根据需要为了以所要的形状形成图案使用照相平板印刷技术。
本发明的发明者们发现,对于以如图22及图23所示的构成具有以AlN为主成分的压电体膜16、在2GHz附近具有基本模式共振的FBAR,发挥AlN薄膜的弹性波传播速度快这一特长的同时,为了不损害电机械结合系数以及音响品质系数又能提高共振频率的温度稳定性,认真研究的结果,绝缘层13使用以SiO2或者SiNx为主成分的物质、并且顶部底部电极15.17使用以Mo为主成分的物质,是有效的。而且,发现通过使压电体膜16的厚度t和绝缘层13的厚度t’满足0.1≤t’/t≤0.5、最好是0.2≤t’/t≤0.4,电机械结合系数、音响品质系数和共振频率的温度稳定性全部变得更加优良。t’/t<0.1时,虽然电机械结合系数和音响品质系数会有若干提高,但是共振频率的温度系数的绝对值变大,作为FBAR的特性有降低的倾向。并且,t’/t>0.5时,电机械结合系数和音响品质系数降低,共振频率的温度系数的绝对值变大,作为FBAR的特性有降低的倾向。
图24是表示基于本发明的压电薄膜共振体的其他实施方式的模式平面图,图25是其X-X截面图。在这些图中,对于和所述图22、图23中有同样功能的部分,标记有统一的符号。
在本实施方式中,除了绝缘层13,还有以SiO2或者SiNx为主成分的(优选含有量为50当量%以上)绝缘层18接合于压电层压构造体14上。绝缘层18形成于顶部电极17的主体部分17a上方。绝缘层18也可以延伸到对应振动部分121以外的区域,在压电体膜16上广泛的范围内延伸。并且,形成以氧化硅或者氮化硅作为主成分的绝缘层18时,也可以省略绝缘层13。但是,这种情况下,最好使底部电极15的主体部分15a通过在基板112的上表面的导通孔120的矩形开口的2边,延伸到此开口内,用底部电极15支撑振动部分121。
图24、25的实施方式中,也可以得到与图22、23的实施方式相同的效果。
图26表示基于本发明的压电薄膜共振体的其他实施方式的模式平面图,图27是其X-X截面图。在这些图中,对于和所述图22~图25中有同样功能的部分,标记有统一的符号。
本实施方式中,底部电极15具有矩形的形状,顶部电极17由第1电极部分17A和第2电极部分17B构成。这些电极部分17A、17B分别具有主体部分17Aa、17Ba和端子部分17Ab、17Bb。主体部分17Aa、17Ba位于对应振动部分121的区域内,端子部分17Ab、17Bb位于对应振动部分121的区域之外。
图28表示基于本发明的压电薄膜共振体的其他实施方式的模式平面图,图29是其X-X截面图。在这些图中,对于和所述图22~图27中有同样功能的部分,标记有统一的符号。
本实施方式中,底部电极15具有矩形的形状,顶部电极17由第1电极部分17A和第2电极部分17B构成。这些电极部分17A、17B分别具有主体部分17Aa、17Ba和端子部分17Ab、17Bb。主体部分17Aa、17Ba位于对应振动部分121的区域内,端子部分17Ab、17Bb位于对应振动部分121的区域之外。本实施方式中,形成绝缘层18使其能够覆盖第1电极部分的主体部分17Aa和第2电极部分的主体部分17Ba两者。
在图26、27的实施方式和图28、29的实施方式中,也可以得到和图22、23的实施方式和图24、25的实施方式相同的效果。并且,图26、27和图28、29的实施方式被称作多模式共振体,可以在顶部电极17中的一个(比如第2电极部分17B)和底部电极15之间加上输入电压,从顶部电极17中的另一个(比如第2电极部分17A)和底部电极15之间得到输出电压。
在所述这样的压电薄膜共振体中,使用微波探测器测定的关于阻抗特性的共振频率fr及反共振频率fa、和电机械结合系数kt2之间,具有如下关系kt2=φr/Tan(φr)φr=(π/2)(fr/fa)为了简单,电机械结合系数kt2可以使用由下式算出的值。
kt2=4.8(fa-fr)/(fa+fr)本说明书中电机械结合系数kt2的值就使用了用此式算出的值。
对于图22、23、图24、25、图26、27和图28、29中所示构成的FBAR,从2.0GHz附近的共振频率和反共振频率的测定值中求出的电机械结合系数kt2为4.0~6.5%。电机械结合系数kt2小于4.0时,所制造的FBAR的带宽变小,在高频区的实用变难。
以下通过实施例更详细地说明本发明。
如图3~图8所示制作薄膜音响共振器。
首先,将Si晶片51的表面用Pt/Ti保护膜覆盖,利用蚀刻使此保护膜形成为了形成洼陷所需要的规定形状,形成为了Si晶片51的蚀刻所用的遮蔽膜。然后,使用Pt/Ti式样遮蔽膜进行湿蚀刻,如图3所示,形成深20μm宽150μm的洼陷。此蚀刻使用5重量%的KOH水溶液,在液体温度70℃下进行。另,洼陷深度3μm也可以。
然后,去除Pt/Ti式样遮蔽膜,如图3所示,用热氧化在Si晶片51的表面形成厚度1μm的SiO2层53,得到在由Si晶片51和SiO2层53构成的基板上形成洼陷52的构造。
接着,如图4所示,在形成洼陷52的SiO2层53上,堆积厚度30μm的PSG牺牲层。这个堆积,通过在450℃下以硅烷和P2O5作为原料的热CVD法进行。另外,PSG牺牲层55的厚度也可以是5μm,热CVD法中所用的原料也可以是硅烷和磷酸三甲酯(PO(OCH3)3),而且,堆积的PSG层还可以在1%氧气/氮气混合气氛中在850℃进行20分钟热处理,使其软溶提高硬度。
接着,如图5所示,研磨PSG牺牲层55的表面,去除位于洼陷52以外区域的PSG牺牲层55。接着,用含有细微的研磨粒子的浆研磨残留在洼陷52内的PSG牺牲层55表面,使其表面粗糙度为高度RMS误差10nm。
接着,如图6所示,在PSG牺牲层55上方形成厚度100nm、尺寸200×200μm的由Mo膜形成的底部电极61。Mo膜的形成,使用Ar作为溅射气体,在室温下DC磁控管溅射法进行。然后,用发射法进行Mo膜的图案形成。测定形成的Mo膜的表面粗糙度,高度RMS误差为15nm。
接着,在底部电极61上形成由ZnO膜形成的1.0μm厚的压电体层62。ZnO膜的形成中,作为溅射靶使用ZnO,作为溅射气体使用Ar和O2的混合气体,溅射气体压强为5mTorr,在基板温度400℃时使用磁控管溅射法。测定形成的ZnO膜的表面粗糙度,高度RMS误差为11nm,是膜厚度的5%以下。通过湿蚀刻使ZnO膜图案形成,成为规定的形状得到压电体层62。
接着,在压电体层62上形成厚度100nm的由Mo膜形成的顶部电极63。Mo膜的形成和图案形成与形成底部电极62时一样。对于顶部电极63的表面,以测定长度150μm检测时,得到起伏高度为0.2μm,是压电体层62的膜厚度的25%以下,并且是测定长度的0.5%以下。
接着,通过使用稀释的H2O∶HF溶液蚀刻去除PSG牺牲层55。这样,如图8所示,在洼陷52上形成Mo/ZnO/Mo的夹层构造60被架桥的形态。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为88.5度,用摇摆曲线观察定向度,半峰值宽度为2.5度,显示了良好的定向性。
对以上这样得到的音响共振器,使用微波探测器测定顶部电极63和底部电极61之间的阻抗特性,并且测定共振频率fr和反共振频率fa,基于这些测定值计算电机械结合系数kt2。电机械结合系数kt2为5.5%,音响品质系数为700。在实施例1中得到的FBAR结构以及作为音响共振器的特性示于表1中。
除了进行研磨时使PSG牺牲层55的表面粗糙度为高度RMS误差70nm以外,其他和实施例1一样,制作音响共振器。
测定底部电极61的Mo膜的表面粗糙度,高度RMS误差为80nm。还有,测定ZnO膜的表面粗糙度,高度RMS误差为75nm,超过了膜厚度的5%。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为1.0μm,超过了测定长度的0.5%。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为85.0度,有很大的倾斜,用摇摆曲线观察定向度,半峰值宽度为7.0度。
以上这样得到的音响共振器的电机械结合系数kt2为3.0%,音响品质系数为400。在比较例1中得到的FBAR结构以及作为音响共振器的特性示于表1中。
除了使用AlN膜制成的物质代替压电体层62所用的ZnO膜以外,其他和实施例1一样,制作音响共振器。即,在底部电极61上形成由AlN膜形成的1.2μm厚的压电体层62。AlN膜的形成中,作为溅射靶使用Al,作为溅射气体使用Ar和N2的混合气体,在基板温度400℃下使用磁控管溅射法进行。测定形成的AlN膜的表面粗糙度,高度RMS误差为14nm,是膜厚度的5%以下。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为0.2μm,是压电体层62的膜厚度的25%以下,并且是测定长度的0.5%以下。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为88.5度的方向,用摇摆曲线观察定向度,半峰值宽度为2.8度,显示出良好的定向性。
以上这样得到的音响共振器的电机械结合系数kt2为6.5%,音响品质系数为900。在实施例2中得到的FBAR结构以及作为音响共振器的特性示于表1中。
除了进行研磨时使PSG牺牲层55的表面粗糙度为高度RMS误差70nm以外,其他和实施例2一样,制作音响共振器。
测定底部电极61的Mo膜的表面粗糙度,高度RMS误差为85nm。还有,测定AlN膜的表面粗糙度,高度RMS误差为80nm,超过了膜厚度的5%。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为1.25μm,超过了测定长度的0.5%。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为83.0度,有很大的倾斜,用摇摆曲线观察定向度,半峰值宽度为8.5度。
以上这样得到的音响共振器的电机械结合系数kt2为3.5%,音响品质系数为450。在比较例2中得到的FBAR结构以及作为音响共振器的特性示于表1中。
如图3~图5、图9~图10所记载,制作薄膜音响共振器。
首先,和实施例1一样,得到图5所示的构造。但是,残留于洼陷52内的PSG牺牲层55的表面用含有细微的研磨粒子的浆研磨,使其表面粗糙度为高度RMS误差5nm。
然后,如图9所示,用CVD法形成厚度500nm的由SiO2膜构成的绝缘体层54,使其也能覆盖PSG牺牲层55的表面。测定所形成的绝缘体层54的表面粗糙度,高度RMS误差为10nm。
然后,在绝缘体层54上,与实施例1一样,如图10所示,形成由Mo膜构成的底部电极61。测定所形成的Mo膜表面粗糙度,高度RMS误差为15nm。
然后,与实施例1一样,在底部电极61上形成由ZnO膜构成的压电体层62。测定形成的ZnO膜的表面粗糙度,高度RMS误差为10nm,是膜厚度的5%以下。通过湿蚀刻使ZnO膜形成图案,成为规定的形状得到压电体层62。
接着,与实施例1一样,在压电体层62上形成由Mo膜形成的顶部电极63。对于顶部电极63的表面,在测定长度为150μm时,调查得到起伏高度为0.2μm,是压电体层62的膜厚度25%以下,并且是测定长度的0.5%以下。
接着,在绝缘体层54的裸露部分形成能够到达PSG牺牲层55的导通孔开口,通过此开口使用稀释的H2O∶HF溶液蚀刻去除PSG牺牲层55。这样,如图8所示,在洼陷52上形成包括绝缘体层54和Mo/ZnO/Mo的夹层构造60的层压体被架桥的形态。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为88.5度,用摇摆曲线观察定向度,半峰值宽度为2.3度,显示了良好的定向性。
对以上这样得到的音响共振器,使用微波探测器测定顶部电极63和底部电极61之间的阻抗特性,并且测定共振频率fr和反共振频率fa,基于这些测定值计算电机械结合系数kt2。电机械结合系数kt2为4.5%,音响品质系数为650。在实施例3中得到的FBAR结构以及作为音响共振器的特性示于表1中。
除了进行研磨时使PSG牺牲层55的表面粗糙度为高度RMS误差70nm以外,其他和实施例2一样,制作音响共振器。
测定绝缘体层54的SiO2膜的表面粗糙度,高度RMS误差为85nm。并且,测定底部电极61的Mo膜的表面粗糙度,高度RMS误差为90nm。还有,测定ZnO膜的表面粗糙度,高度RMS误差为85nm,超过了膜厚的5%。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为1.0μm,超过了测定长度的0.5%。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为83.0度,有很大的倾斜,用摇摆曲线观察定向度,半峰值宽度为9.5度。
以上这样得到的音响共振器的电机械结合系数kt2为2.8%,音响品质系数为360。在比较例3中得到的FBAR结构以及作为音响共振器的特性示于表1中。
除了顶部电极63的形成以外,其他与实施例2一样,制作音响共振器。即,与实施2一样,在压电体层62上形成厚100nm的Mo膜后,从其外边缘起在30μm宽的区域内,再用发射法形成厚20nm的Mo膜,形成如图11所示的顶部电极63。
对于顶部电极63的中央部分631的表面,在测定长度为100μm时,起伏高度为0.15μm,是压电体层62的膜厚度的25%以下,并且是测定长度的0.5%以下。
以上这样得到的音响共振器的电机械结合系数kt2为7.5%,音响品质系数为950。在实施例4中得到的FBAR结构以及作为音响共振器的特性示于表1中。
如图3~图8所记载,制作薄膜音响共振器。
首先,将Si晶片51的表面用SiO2保护膜覆盖,通过蚀刻此保护膜形成为了形成洼陷所需要的规定图案,形成Si晶片51的蚀刻所用的遮蔽膜。然后,使用此遮蔽膜进行湿蚀刻,如图3所示,形成深20μm宽150μm的洼陷。此蚀刻与实施例1一样实施。
然后,用湿蚀刻除去SiO2图案遮蔽膜,如图3所示,在Si晶片51的表面形成厚度200nm的Si3N4层53,得到在由Si晶片51和Si3N4层53制成的基板上形成洼陷52的构造。此Si3N4层53的堆积,是在800℃下,以硅烷(SiH4)和氨(NH3)为原料,用低压CVD法进行。
接着,如图4所示,在形成洼陷52的Si3N4层53上,堆积厚5μm的PSG牺牲层55。此堆积,是在450℃下,以四乙氧基硅烷(Si(OC2H5)4)和磷酸三甲酯(PO(OCH3)3)原料,用热CVD法进行。并且,堆积后的PSG层在1%氧气/氮气混合气氛中,在850℃下进行20分钟热处理,使其软溶提高硬度。
接着,和实施例1一样,得到图5所示的构造。但是,根据研磨粒子的选择,使残留于洼陷52内的PSG牺牲层55的表面粗糙度为高度RMS误差5nm。
接着,和实施例1一样,如图6所示,形成由Mo膜构成的底部电极61。测定所形成的Mo膜表面粗糙度,高度RMS误差为13nm。
接着,与实施例2一样,在底部电极61上形成由AlN膜形成的1.2μm厚的压电体层62。测定形成的AlN膜的表面粗糙度,高度RMS误差为10nm,是膜厚度的5%以下。
接着,与实施例1一样,在压电体层62上形成由Mo膜形成的顶部电极63。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为0.15μm,是压电体层62的膜厚度的25%以下,并且是测定长度的0.5%以下。
接着,与实施例1一样,去除PSG牺牲层55。这样,如图8所示,在洼陷52上形成Mo/ZnO/Mo的夹层构造60被架桥的形态。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为89.5度,用摇摆曲线观察定向度,半峰值宽度(FWHM)为2.2度,显示了良好的定向性。
对以上这样得到的音响共振器,使用微波探测器测定顶部电极63和底部电极61之间的阻抗特性,并且测定共振频率fr和反共振频率fa,基于这些测定值计算电机械结合系数kt2。电机械结合系数kt2为6.7%,音响品质系数为980。在实施例5中得到的FBAR结构以及作为音响共振器的特性示于表1中。
如图3~图5、图9~图10所记载,制作薄膜音响共振器。
首先,和实施例5一样,得到图5所示的构造。但是,通过对研磨粒子的选择,使残留于洼陷52内的PSG牺牲层55的表面粗糙度为高度RMS误差10nm。
然后,如图9所示,在基板上形成厚度500nm的由Si3N4膜制成的绝缘体层54,使其也能覆盖PSG牺牲层55的表面。此由Si3N4膜制成的绝缘体层54的堆积,是在800℃下,以硅烷(SiH4)和氨(NH3)为原料,用低压CVD法进行。测定所形成的绝缘体层54的表面粗糙度,高度RMS误差为12nm。
接着,在绝缘体层54上,和实施例5一样,如图10所示,形成由Mo膜构成的底部电极61。测定所形成的Mo膜表面粗糙度,高度RMS误差为17nm。
接着,与实施例5一样,在底部电极61上形成由AlN膜形成的压电体层62。测定形成的AlN膜的表面粗糙度,高度RMS误差为15nm,是膜厚度的5%以下。
接着,与实施例5一样,在压电体层62上形成由Mo膜形成的顶部电极63。对于顶部电极63的表面,在测定长度为150μm时,起伏高度为0.21μm,是压电体层62的膜厚度的25%以下,并且是测定长度的0.5%以下。
接着,与实施例3一样,去除PSG牺牲层55。这样,如图10所示,在洼陷52上形成包括绝缘体层54和Mo/ZnO/Mo的夹层构造60的层压体被架桥的形态。
对得到的压电体层62进行薄膜XRD分析,得到膜的c轴相对膜面为88.4度,用摇摆曲线观察定向度,半峰值宽度(FWHM)为2.8度,显示了良好的定向性。
对以上这样得到的音响共振器,使用微波探测器测定顶部电极63和底部电极61之间的阻抗特性,并且测定共振频率fr和反共振频率fa,基于这些测定值计算电机械结合系数kt2。电机械结合系数kt2为5.2%,音响品质系数为700。在实施例6中得到的FBAR结构以及作为音响共振器的特性示于表1中。
如图15~图21所记载,制造薄膜音响共振器。
首先,将Si晶片51的表面用SiO2保护膜覆盖,通过蚀刻使此保护膜形成为了形成洼陷所需要的规定图案,形成Si晶片51的蚀刻所用的遮蔽膜。然后,使用此遮蔽膜进行湿蚀刻,如图15所示,形成深20μm的洼陷。此蚀刻中,作为蚀刻液使用5wt%的KOH水溶液,在液体温度70℃下进行。另外,洼陷深度为3μm也可以。
然后,通过热氧化,在晶片51的表面再次形成SiO2层53。这样,得到在由Si晶片51和SiO2层53制成的基板上形成洼陷52的构造。
然后,在基板的表面(上表面)形成Cr膜,蚀刻此Cr膜形成图案,只环状地剩下包围洼陷52周围的部分。这样,如图16所示,形成了包围洼陷52的由Cr膜制成的紧密电极层161。Cr膜的形成使用DC磁控管溅射法,溅射气体使用Ar,基板温度在室温下进行。形成的Cr紧密电极层161,使其上表面中成为与下方电极层之间的接触面的平面面积(S1)为4500μm2,膜厚度为100nm。
然后,如图17所示,在形成洼陷52的SiO2层53和Cr紧密电极层61上,使用硅烷和磷化氢(PH3)在450℃堆积PSG。另外,堆积的PSG层还可以在1%氧气/氮气混合气氛中在850℃进行20分钟热处理,使其软溶提高硬度。
接着,如图18所示,研磨堆积的PSG表面除去PSG层位于紧密电极层161之上的部分,接着用含细微的研磨粒子的浆研磨PSG层55的表面,用逆溅射处理使Cr紧密电极层161的表面清净化。这样,PSG牺牲层55的表面,其表面粗糙度为高度RMS误差8nm。
然后,如图19所示,在Cr紧密电极层61和PSG牺牲层55上,形成由Au构成的下方电极层162。此下方电极层162的图案形成采用发射法,得到规定形状的下方电极层162具有和Cr紧密电极层161外边缘对应的外边缘。Au膜的形成,使用DC磁控管溅射法,溅射气体使用Ar,基板温度在室温下进行。形成下方电极层162,使其平面面积(S2)为27225μm2,膜厚度为100nm。所得的Au膜的表面粗糙度,高度RMS误差为7nm。
接着,除去残留在下方电极层162周围的PSG牺牲层,在下方电极层162上形成由ZnO所制的压电体薄膜层163。ZnO膜的形成使用RF磁控管溅射法,溅射靶使用ZnO,溅射气体使用Ar∶O2为9∶1的Ar-O2混合气体,溅射气体压强为5mTorr,基板温度在400℃下进行。ZnO膜的膜厚度为1.0μm。所得的ZnO膜的表面粗糙度,高度RMS误差为4nm。
接着,湿蚀刻ZnO压电体薄膜层163,按规定形状形成图案,使其除了引出结合电极所必要的开口部位以外,具有和Cr紧密电极层161的外边缘以及下方电极层162的外边缘相对应的外边缘。然后,在ZnO压电体薄膜层163上形成Au所制的顶部电极层164。此顶部电极层164的图案形成采用发射法,得到规定形状使其外边缘的位置在比Cr紧密电极层161的内边缘更内侧的地方。Au膜的形成,使用DC磁控管溅射法,溅射气体使用Ar,基板温度在室温下进行。Au膜的膜厚度为100nm。
接着,通过RIE(反应性离子蚀刻),形成从上方电极层164的周边部分朝向下方、通过上方电极层164、压电体薄膜层163以及下方电极层162后到达牺牲层55的贯穿小孔,通过用稀释的H2O∶HF溶液蚀刻,除去PSG牺牲层55。这样,如图20所示,在洼陷52上方得到Cr/Au/ZnO/Au的夹层构造体60被架桥的形态。对于所得的夹层构造体60,进行基于荧光涂料带进行剥离试验,没有观察到与基板之间的剥离。
对得到的ZnO压电体薄膜层163进行薄膜XRD分析,得到膜的c轴相对膜面内部为88.6度,用摇摆曲线观察定向度,(0002)半峰值宽度(FWHM)为2.3度,显示了良好的定向性。
并且,对以上这样得到的如图20和图21所示的薄膜音响共振器,使用微波探测器测定上方电极层164和下方电极层162以及紧密电极层161之间的阻抗特性,并且测定共振频率fr和反共振频率fa,基于这些测定值计算电机械结合系数kt2。这时,杂散频率没有被激励,电机械结合系数kt2为5.5%,音响品质系数为1145。在实施例7中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
作为紧密电极层161使用Ti所制的物体代替Cr以外,和实施例7一样,制作薄膜音响共振器。Ti膜的形成,使用DC磁控管溅射法,溅射靶使用Ti,溅射气体使用Ar,基板温度在室温下进行。Ti膜的膜厚度为20nm。所得的ZnO压电体薄膜层163的表面粗糙度,高度RMS误差为9nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,ZnO压电体薄膜层163的c轴相对膜面内部为89.2度,用摇摆曲线观察定向度,半峰值宽度为2.1度,显示了良好的定向性。
这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为5.9%,音响品质系数为772。在实施例8中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
作为下方电极层162和上方电极层164使用Pt所制的物体代替Au,并且使Cr紧密电极层161的厚度为60nm,其它和实施例7一样,制作薄膜音响共振器。Pt膜的形成,使用DC磁控管溅射法,溅射靶使用Pt,溅射气体使用Ar,基板温度在室温下进行。Pt膜的膜厚度为100nm。所得的ZnO压电体薄膜层163的表面粗糙度,高度RMS误差为6nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,ZnO压电体薄膜层163的c轴相对膜面内部为88.8度,用摇摆曲线观察定向度,半峰值宽度为2.5度,显示了良好的定向性。
这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为5.2%,音响品质系数为898。在实施例9中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
作为紧密电极层161使用Ni所制的物体代替Cr,并且使其平面面积S1扩大为15000μm2,与下方电极层162的平面面积S2之比S1/S2为0.55,其它和实施例7一样,制作薄膜音响共振器。Ni膜的形成,使用DC磁控管溅射法,溅射靶使用Ni,溅射气体使用Ar,基板温度在室温下进行。Ni膜的膜厚度为50nm。所得的ZnO压电体薄膜层163的表面粗糙度,高度RMS误差为11nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,ZnO压电体薄膜层163的c轴相对膜面内部为89.0度,用摇摆曲线观察定向度,半峰值宽度为2.9度,显示了良好的定向性。
这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为4.8%,音响品质系数为707。在实施例10中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
作为上方和下方电极层162、164使用Pt所制的物体代替Au,作为压电薄膜层163使用AlN所制的物体代替ZnO,并且使Ti紧密电极层161的平面面积S1为4000μm2厚度为30nm,其它和实施例8一样,制作薄膜音响共振器。Pt膜的形成与实施例9一样进行。并且,AlN膜的形成,使用RF磁控管溅射法,溅射靶使用Al,溅射气体使用Ar∶N2为1∶1的Ar-N2混合气体,基板温度在400℃下进行。AlN膜的膜厚度为1.4μm。观察所得的AlN膜的表面粗糙度,高度RMS误差为7nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,AlN压电体薄膜层163的c轴相对膜面内部为90.0度,用摇摆曲线观察定向度,半峰值宽度为2.7度,显示了良好的定向性。
这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为6.4%,音响品质系数为984。在实施例11中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
作为紧密电极层161使用Cr所制的物质,作为上方和下方电极层162、164使用Mo所制的物质,并且Cr紧密电极层161的平面面积S1为5000μm2厚度为40nm,其它和实施例11一样,制作薄膜音响共振器。观察所得的AlN膜的表面粗糙度,高度RMS误差为5nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,AlN压电体薄膜层163的c轴相对膜面内部为89.8度,用摇摆曲线观察定向度,半峰值宽度为2.9度,显示了良好的定向性。
这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为6.1%,音响品质系数为1140。在实施例12中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
在由Si晶片51和SiO2层53制成的基板上形成洼陷52的构造上方堆积PSG,研磨其表面除去PSG层位于洼陷52以外区域内的部分,使洼陷52区域内的PSG层的表面的表面粗糙度为高度RMS误差38nm,在其上方形成Cr膜和Au膜,将这些膜以同一形状形成图案,紧密电极层161全面地结合于下方电极层162,除了这种形态以外,和实施例7一样,制作薄膜音响共振器。所得的ZnO膜的表面粗糙度,高度RMS误差为30nm。进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。并且,进行薄膜XRD分析的结果,ZnO压电体薄膜层163的c轴相对膜面内部为87.5度的方向,用摇摆曲线观察定向度,半峰值宽度为4.8度,与实施例7相比显示了2.5度左右的恶化。
并且,这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为2.5%,音响品质系数为404。在比较例4中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
除了没有设置紧密电极层161以外,和比较例4一样,制作薄膜音响共振器。但是,位于洼陷52区域内的PSG层的表面的表面粗糙度为高度RMS误差33nm。所得的ZnO膜的表面粗糙度,高度RMS误差为23nm。进行薄膜XRD分析的结果,ZnO压电体薄膜层163的c轴相对膜面内部为88.4度的方向,用摇摆曲线观察定向度,半峰值宽度为4.2度,进行基于荧光涂料带进行剥离试验,没有观察到基板和夹层构造体60之间的剥离。
并且,这样得到的薄膜音响共振器,杂散频率没有被激励,电机械结合系数kt2为3.2,音响品质系数为446。在比较例5中得到的FBAR结构、结合强度以及作为音响共振器的特性示于表2中。
在本实施例中,如以下所述,制作如图22、23所示构造的压电薄膜共振体。
即,在厚250μm的(100)Si基板112的上表面和下表面,用热氧化法形成厚0.3~0.6μm的氧化硅(SiO2)层。并且,为了形成与基板112相对的后述的导通孔,在下表面一侧的SiO2层形成遮掩膜的图案。
在绝缘层13的表面,使用DC磁控管溅射法形成厚0.1μm的Mo层,用照相平板印刷技术图案化形成底部电极15。底部电极15的主体部分15a为接近平面尺寸140×160μm的矩形的形状。在这个Mo底部电极15上,形成结晶面朝C轴定向的厚1.3~2.0μm的AlN薄膜。AlN薄膜的形成,通过反应性RF磁控管溅射法进行。通过使用热磷酸的湿蚀刻,使AlN薄膜按规定的形状图案化,形成压电体膜16。然后,使用DC磁控管溅射法和发射法,形成厚0.1μm的Mo所制的顶部电极17。顶部电极17的主体部分17a为接近平面尺寸140×160μm的矩形的形状,安置在与底部电极主体部分15a相对应的位置。
接着,将以上这样得到的构造中的上下方电极15、17以及形成压电体摸6的一侧用PMMA树脂覆盖,形成于Si基板112的下表面的图案形状SiO2层作为遮掩膜,用KOH水溶液蚀刻去除Si基板112中对应振动部分121的部分,形成成为空隙的导通孔120。在Si基板112的上表面形成的导通孔开口的尺寸(振动部分21的平面尺寸)为200×200μm。
由以上工序制得的薄膜压电共振体(FBAR),使用カスヶ一ド·マィクロテック制造的微波探测器和网络分析仪,测定所述薄膜压电共振体的电极端子15b、17b之间的阻抗特性,并且基于共振频率fr和反共振频率fa测定值,计算电机械结合系数kt2、频率温度特性τf以及音响品质系数Q。所得的压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
在本实施例中,如以下所述,制作如图24、25所示构造的压电薄膜共振体。
即,在顶部电极17形成之后、导通孔形成之前,在顶部电极17上用RF磁控管溅射法形成厚0.1~0.3μm的SiO2层,形成上部绝缘层18并图案化使其对应于振动部分121,并且,底部绝缘层13的厚度和压电体膜16的厚度如表3所示,除此以外,实施与实施例13~15同样的工序。
由以上工序得到的薄膜压电共振体(FBAR),与实施例13~15一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
在本实施例中,如以下所述,制作如图26、27所示构造的压电薄膜共振体以及如图28、29所示构造的压电薄膜共振体。
即,除了使上下方绝缘层13、18的厚度和压电体膜16的厚度如表3所示,并且除了上下方电极15、17的形状和尺寸外,实施与实施例13~15同样的工序[实施例19、20]以及与实施例16~18同样的工序[实施例21、22]。底部电极15延伸到平面尺寸150×200μm的矩形形状,并包含与振动部分121对应的区域,顶部电极17配置了主体部分17Aa、17Ba,均为接近平面尺寸70×90μm的矩形的形状,且间隔20μm。
由以上工序得到的薄膜压电共振体(FBAR),与实施例13~15以及实施例16~18一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
在本实施例中,如以下所述,制作如图22、23所示构造的压电薄膜共振体以及如图24、25所示构造的压电薄膜共振体。
即,除了使压电体膜16的厚度和上下方绝缘层13、18的厚度为表3所示外,实施与实施例13同样的工序[实施例23、24]以及与实施例16同样的工序[实施例25]。
由以上工序得到的薄膜压电共振体(FBAR),与实施例13以及实施例16一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
除了作为上下电极层的材料使用铝(Al)代替Mo,使压电体膜16的厚度和绝缘层13的厚度为表3所示外,实施与实施例13同样的工序。
由以上工序得到的薄膜压电共振体(FBAR),与实施例13一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
除了绝缘层13仅形成于与振动部分121对应区域之外,实施与由以上工序得到的薄膜压电共振体(FBAR),与实施例13一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
除了作为压电体膜16的材料使用氧化锌(ZnO)代替AlN,使压电体膜16的厚度和绝缘层13的厚度如表3所示外,实施与实施例13同样的工序。
由以上工序得到的薄膜压电共振体(FBAR),与实施例13一样,压电薄膜共振体的厚度振动的基本频率、电机械结合系数kt2、频率温度特性τf以及音响品质系数Q如表3所示。
由以上的结果,振动部分包含由以钼为主成分的电极和以氮化铝为主成分的压电体膜构成的压电层压构造体的一部分,氧化硅具有与此振动部分共振频率的温度系数异号的温度系数,通过在压电层压构造体上继续接合以氧化硅为主成分的绝缘层,可以实现维持电机械结合系数和音响品质系数不变并具有良好的共振频率温度稳定性的压电薄膜共振体。特别是,适用于在1GHz以上的高频区使用的VCO(压电薄膜共振体)、滤波器、收发切换机时,可以显著提高其性能。
工业实用性如以上说明,根据本发明,提供高性能的薄膜音响共振器,在从高度RMS误差25nm以下、优选20nm以下的原子级来看平滑的牺牲层表面上,直接或者通过绝缘体层形成第1电极,此第1电极的表面为高度RMS误差25nm以下、优选20nm以下,在其上形成压电体层,所以第1电极的结晶性上升,压电体层的定向性以及结晶品质也随着显著改善,这样,具有十分优良的电机械结合系数以及音响品质系数。
并且,如以上说明,根据本发明,在下方电极层和基板之间设置了紧密电极层,此紧密电极层在形成于基板上的洼陷周围与基板相接合,所以抑制了薄膜音响共振器中的横向振动的发生,防止在薄膜音响共振器的振动中重叠多余的杂散频率振动,改善了薄膜音响共振器和滤波器的共振特性、品质系数。并且,在下方电极层中央部分的下方(也就是被紧密电极层包围的内侧部分)中因为不存在紧密电极层,下方电极层中央部分可以形成在平滑度极高的牺牲层表面,提高定向性和结晶性,基于此,形成具有优良的定向性和结晶品质的压电体薄膜层,提供具有优良的电机械结合系数和音响品质系数(Q值)的高性能的薄膜音响共振器。而且,通过使用紧密电极层,可以提高下方电极层和基板的结合性(接合强度),下方电极层材料的选择范围变大,可以提高薄膜音响共振器的耐久性使其长寿命化。
并且,如以上说明,根据本发明的压电薄膜共振体,由于使用以钼为主成分的电极、以氮化铝为主成分的压电体膜、和以氧化硅或者氮化硅为主成分的绝缘层的组合,可以提高电机械结合系数、音响品质系数(Q值)以及频率温度特性。
权利要求
1.薄膜音响共振器,其特征在于,具有压电体层、与该压电体层第1表面接合的第1电极、和与位于所述压电体层的所述第1表面相反一侧的第2表面接合的第2电极,所述压电体层的第1表面的高度RMS误差在25nm以下。
2.如权利要求1所记载的薄膜音响共振器,其特征在于,所述压电体层的第1表面的高度RMS误差在20nm以下。
3.如权利要求1所记载的薄膜音响共振器,其特征在于,所述压电体层的所述第2表面的高度RMS误差在所述压电体层的厚度的5%以下。
4.如权利要求1所记载的薄膜音响共振器,其特征在于,所述第2电极的表面起伏高度在所述压电体层的厚度的25%以下。
5.如权利要求1所记载的薄膜音响共振器,其特征在于,所述第2电极具有中央部分和比中央部分厚的外围部分。
6.如权利要求5所记载的薄膜音响共振器,其特征在于,所述外围部分框状地位于所述中央部分周围。
7.如权利要求5所记载的薄膜音响共振器,其特征在于,所述第2电极中,所述中央部分的厚度误差在该中央部分的厚度的1%以下。
8.如权利要求5所记载的薄膜音响共振器,其特征在于,所述外围部分的厚度为所述中央部分的高度的1.1倍以上。
9.如权利要求5所记载的薄膜音响共振器,其特征在于,所述外围部分位于从所述第2电极的外边缘起40μm距离的范围内。
10.如权利要求5所记载的薄膜音响共振器,其特征在于,所述中央部分的表面起伏高度为所述压电体层厚度的25%以下。
11.如权利要求1所记载的薄膜音响共振器,其特征在于,由所述压电体层、所述第1电极和所述第2电极形成的夹层构造体,象跨过形成于基板表面的洼陷一样,由所述基板支撑边缘部分。
12.如权利要求11所记载的薄膜音响共振器,其特征在于,所述基板的表面上,配置了跨过所述洼陷而形成的绝缘体层,该绝缘体层上形成所述夹层构造体。
13.薄膜音响共振器,其特征在于,具有压电体层、与该压电体层得第1表面相接合的第1电极、和与位于所述压电体层的所述第1表面相反一侧的第2表面接合的第2电极,所述第1电极的所述压电体层一侧的表面高度RMS误差为25nm以下。
14.如权利要求13所记载的薄膜音响共振器,其特征在于,所述第1电极的所述压电体层一侧的表面高度RMS误差为20nm以下。
15.如权利要求13所记载的薄膜音响共振器,其特征在于,所述压电体层的所述第2表面的高度RMS误差为所述压电体层的厚度的5%以下。
16.如权利要求13所记载的薄膜音响共振器,其特征在于,所述第2电极的表面起伏高度为所述压电体层的厚度的25%以下。
17.如权利要求13所记载的薄膜音响共振器,其特征在于,所述第2电极具有中央部分和比中央部分厚的外围部分。
18.如权利要求17所记载的薄膜音响共振器,其特征在于,所述外围部分框状地位于所述中央部分周围。
19.如权利要求17所记载的薄膜音响共振器,其特征在于,所述第2电极中,所述中央部分的厚度误差在该中央部分的厚度的1%以下。
20.如权利要求17所记载的薄膜音响共振器,其特征在于,所述外围部分的厚度为所述中央部分的高度的1.1倍以上。
21.如权利要求17所记载的薄膜音响共振器,其特征在于,所述外围部分位于从所述第2电极的外边缘起40μm距离的范围内。
22.如权利要求17所记载的薄膜音响共振器,其特征在于,所述中央部分的表面起伏高度为所述压电体层厚度的25%以下。
23.如权利要求13所记载的薄膜音响共振器,其特征在于,由所述压电体层、所述第1电极和所述第2电极形成的夹层构造体,象跨过形成于基板表面的洼陷一样,由所述基板支撑边缘部分。
24.如权利要求23所记载的薄膜音响共振器,其特征在于,所述基板的表面上,配置了跨过所述洼陷而形成的绝缘体层,该绝缘体层上形成所述夹层构造体。
25.薄膜音响共振器的制造方法,制造具有压电体层、与此压电体层第1表面接合的第1电极、和与位于所述压电体层的所述第1表面相反一侧的第2表面接合的第2电极的薄膜音响共振器,其特征在于,在基板表面形成洼陷,在该洼陷内填充牺牲层,研磨该牺牲层表面使其高度RMS误差为25nm以下,跨越所述牺牲层的表面一部分区域和所述基板表面一部分区域在它们上方形成所述第1电极,在该第1电极上形成所述压电体层,在该压电体层上形成所述第2电极,从所述洼陷中蚀刻去除所述牺牲层。
26.如权利要求25所记载的薄膜音响共振器的制造方法,其特征在于,使所述牺牲层表面高度RMS误差为25nm以下。
27.如权利要求25所记载的薄膜音响共振器的制造方法,其特征在于,所述第1电极形成150nm以下的厚度,使该第1电极的上表面高度RMS误差为25nm以下。
28.如权利要求27所记载的薄膜音响共振器的制造方法,其特征在于,使所述第1电极的上表面高度RMS误差为20nm以下。
29.如权利要求25所记载的薄膜音响共振器的制造方法,其特征在于,在所述牺牲层上形成所述第1电极前,先形成绝缘体层。
30.薄膜音响共振器,具有基板;和配置在该基板上,在该基板一侧的下方电极层以及与它相对的上方电极层之间夹入压电体薄膜层,层压构成的夹层构造体,其特征在于,所述夹层构造体又位于所述下方电极层和所述基板之间,并且具有接合于所述下方电极层的接合电极层,此紧密电极层在洼陷的周围与所述基板相接合,此洼陷是为了容许所述夹层构造体的振动而形成于所述基板上的。
31.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述紧密电极层形成为环状。
32.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述紧密电极层和所述下方电极层连接的部分平面面积设为S1,所述下方电极层平面面积设为S2时,满足0.01×S2≤S1≤0.5×S2的关系。
33.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述上方电极层位于对应所述紧密电极层内侧的区域。
34.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述紧密电极层由包含Ti、Cr、Ni、Ta中至少一种的材料构成。
35.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述下方电极层由包含Au、Pt、W、Mo中至少一种的材料构成。
36.如权利要求30所记载的薄膜音响共振器的制造方法,其特征在于,所述压电体薄膜层由AlN或者ZnO构成。
37.制造如权利要求30所记载的薄膜音响共振器的方法,其特征在于,在形成洼陷的基板表面上,在所述洼陷周围形成紧密电极层,在对应该紧密电极层内侧的所述洼陷的区域中在所述基板的表面上形成牺牲层,研磨该牺牲层的表面使其平滑化,使高度RMS误差为25nm以下,在所述牺牲层和所述紧密电极层上,按顺序形成下方电极层、压电体薄膜层和上方电极层,然后去除所述牺牲层。
38.如权利要求37所记载的薄膜音响共振器的制造方法,其特征在于,研磨所述牺牲层的表面使其平滑化,使高度RMS误差为20nm以下。
39.如权利要求37所记载的薄膜音响共振器的制造方法,其特征在于,所述牺牲层的形成中,先形成牺牲层材料的层覆盖所述基板和所述紧密电极层,然后研磨该牺牲层材料的层使所述紧密电极层的表面能露出。
40.如权利要求37所记载的薄膜音响共振器的制造方法,其特征在于,所述牺牲层的去除通过蚀刻进行。
41.如权利要求37所记载的薄膜音响共振器的制造方法,其特征在于,作为所述牺牲层,使用玻璃或者塑料。
42.压电薄膜共振体,具有基板和形成于该基板上的压电层压构造体,振动部分包含所述压电层压构造体的一部分构成,所述压电层压构造体通过按顺序从所述基板一侧层压底部电极、压电体膜以及顶部电极形成,所述基板在对应所述振动部分的区域中形成容许该振动部分振动的空隙,其特征在于,所述压电体膜以氮化铝为主要成分,所述底部电极和所述顶部电极以钼为主要成分,绝缘层以氧化硅或者氮化硅为主要成分,所述振动部分包含与所述压电层压构造体接合的至少一层绝缘层的至少一部分。
43.如权利要求42所记载的压电薄膜共振体,其特征在于,所述压电体膜的厚度t与所述至少一层绝缘层的总厚度t’,满足关系0.1≤t’/t≤0.5。
44.如权利要求42所记载的压电薄膜共振体,其特征在于,所述压电体膜中所述氮化铝的含量为90当量%以上。
45.如权利要求42所记载的压电薄膜共振体,其特征在于,所述绝缘层中,所述氧化硅或氮化硅的含量为50当量%以上。
46.如权利要求42所记载的压电薄膜共振体,其特征在于,所述底部电极以及所述顶部电极中,所述钼的含量为80当量%以上。
47.如权利要求42所记载的压电薄膜共振体,其特征在于,所述绝缘层中的一个形成于所述基板表面上。
48.如权利要求42所记载的压电薄膜共振体,其特征在于,所述绝缘层中的一个形成于所述压电层压构造体的与所述基板相反一侧的表面上。
49.如权利要求42所记载的压电薄膜共振体,其特征在于,所述基板由硅单晶体形成。
50.如权利要求42所记载的压电薄膜共振体,其特征在于,所述顶部电极由互相隔离的第1电极部分和第2电极部分形成。
51.如权利要求42所记载的压电薄膜共振体,其特征在于,从2.0GHz附近的共振频率及反共振频率的测量值,求得电机械结合系数为4.0~6.5%,音响品质系数为750~2000,共振频率的温度系数为-20~20ppm/℃。
全文摘要
在硅晶片(51)的表面形成了氧化硅薄层(53)的基板上,形成洼陷(52)。跨过洼陷(52)一样配置的夹层构造体,由压电体层(62)以及接合于其双面的下方电极(61)和上方电极(63)构成。下方电极(61)的上表面以及与它接合的压电体层(62)的下表面,高度RMS误差为25nm以下。下方电极(61)的厚度为150nm以下。这样,提供具有优良的电机械接合系数和音响品质系数的高性能的薄膜音响共振器。
文档编号G10K11/04GK1531721SQ0280966
公开日2004年9月22日 申请日期2002年5月10日 优先权日2001年5月11日
发明者山田哲夫, 吾, 长尾圭吾, 仙, 桥本智仙 申请人:宇部电子有限公司